ANT8. /28559
NASA CR-120870
TRW 14549-6001-R0O-00

C A e T4 - N e h
FINAL REPORT

HYDROGEN-OXYGEN CATALYTIC IGNITION
AND THRUSTER INVESTIGATION

VOLUME |l
HIGH PRESSURE THRUSTER EVALUATIONS

By
R.J. JOHNSON, B. HECKERT, H.L. BURGE

PREPARED FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
NASA Lewis Research Center
Contract 3-14347

P.N. HERR,

Project Manager



NOTICE

This report was prepared as an account of Government-sponsored work.
Neither the United States, nor the National Aeronautics and Space Admin-
istration (NASA), nor any person acting on behalf of NASA;

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, apparatus,
method, or process disclosed in this report may not
infringe privately-owned rights; or

B. Assumes any liabilities with respect to the use of, or
for damages resulting from the use of, any information,
apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee
or contractor of NASA, or employee of such contractor, to the extent that
such employee or contractor of NASA or employee of such contractor prepares,
disseminates, or provides access to any information pursuant to this employ-
ment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration
Scientific and Technical Information Facility
P. 0. Box 33

College Park, Maryland 20740




1 Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA CR-120870

4, Title and Subtitle 5. Report Date
HYDROGEN-OXYGEN CATALYTIC IGNITION AND THRUSTER INVESTIGATION
Vol. 11 — High Pressure Thruster Evaluations 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.

R. J. Johnson, B. Heckert, H. L. Burge

10, Work Unit No.

9. Performing Organization Name and Address

TRY Systems Group 11

. Contract or Grant No.
One Space Park, Redondo Beach, California 90278

NAS 3-14347

13. Type of Report and Period Covered

12, Sponsoring Agency Name and Address .
Final

National Aeronautics and Space Administration 14

- S ing A Cod
Washington, D.C. 20546 ponsoring Agency ~oce

15. Suppiementary Notes

Project Manager, P. N. Herr, NASA Lewis Research Center, Cleveland, Chio

16. Abstract

The high pressure thruster effort was conducted with the major objective of demonstrating the
TRW duct cooling concept with gaseous Ho/Oo propellant in a thruster operating at nominally

300 psia (2068 kN/m2) and 1500 1bf (667% N?. The high response catalytic igniter concept re-
ported in Volume I of this report was incorporated into the design. The analytical design
methods for the duct cooling were proven in a series of tests with both ambient and reduced
temperature propellants. Long duration tests as well as pulse mode tests demonstrated the
feasibility of the concept. A1l tests were conducted with a scaling of the raised post tripiet
injector design previously demonstrated at 900 1bf in NASA MSFC and MSC demonstration firings. A
series of environmental conditioned firings were also conducted to determine the effects of
thermal soaks, atmospheric air and high humidity. This volume presents the results of the

high pressure thruster evaluations. Volume I presented the results of the catalytic igniter
and low pressure thruster evaluations, NASA CR-120869.

17. Key Words {Suggested by Author{(s)) 18. Distribution Statement

Ignition
Hydrogen-Oxygen
High Pressure
Thruster

Duct Cooling

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price”
Unclassified Unclassified 175

" For sale by the National Technical information Service, Springfield, Virginia 22151

NASA-C-1hm (Rev, H-71)







NAS CR-120870
TRW 14549-6001-R0-01

FINAL REPORT

HYDROGEN-OXYGEN CATALYTIC IGNITION
AND THRUSTER INVESTIGATION

VOLUME II
HIGH PRESSURE THRUSTER EVALUATIONS

by

R. J. Johnson
B. Heckert
H. L. Burge

TRW Systems Group
One Space Park
Redondo Beach, California 90278

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
November 14, 1972
Contract NAS 314347
NASA Lewis Research Center
Cleveland, Ohio

P. N. Herr, Project Manager
Liquid Rocket Technology Branch

TRW Systems Group
One Space Park
Redondo Beach, California 90278






FOREWORD

This report was prepared by the Applied Technology Division of the
TRW Systems Group, One Space Park, Redondo Beach, California, under Con-
tract NAS 3-14347. The contract was administered by the Lewis Research
Center of the National Aeronautics and Space Administration, Cleveland,
Ohio. The NASA Project Manager for the contract was Mr. P. N. Herr of
the Liquid Rocket Technology Branch. This is Volume II of the final
report on the subject contract and summarizes the high pressure thruster
technical effort conducted during the period from March 1971 to December
1971. Volume I describes the catalytic ignition and low chamber pressure
thruster evaluations, and Volume II presents the results of the high pres-
sure thruster evaluations begun during March 1971.
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ABSTRACT

The high pressure thruster effort was conducted with the major objective
of demonstrating the TRW duct cooling concept with gaseous Hp/02 propellant
in a thruster operating at nominally 300 psia (2068 kN/m2) and 1500 1bf
(6672N). The high response catalytic igniter concept reported in Volume I
of this report was incorporated into the design. The analytical design
methods for the duct cooling were proven in a series of tests with both
ambient and reduced temperature propellants. Long duration tests as well
as pulse mode tests demonstrated the feasibility of the concept. A1l tests
were conducted with a scaling of the raised post triplet injector design
previously demonstrated at 900 1bf in NASA MSFC and MSC demonstration
firings. A series of environmental conditioned firings were also conducted
to determine the effects of thermal soaks, atmospheric air and high humidity.
This volume presents the results of the high pressure thruster evaluations.
Volume I presented the results of the catalytic igniter and low pressure
thruster evaluations, NASA CR-120869,
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1. SUMMARY

The experimental results of the high pressure, large thruster efforts
of Contract NAS 3-14347 have demonstrated the feasibility of the TRW duct
cooled concept as a viable design for gaseous H,/0, attitude control thrus-
ters. In this design cooling is provided by bysasging a percentage of the
GH, (20 to 30%) from the injector supply through a free floating cooling
chgnnel jacket around the primary combustion zone. This coolant is heated
and ejected at high velocity along the nozzle walls at a contraction ratio
of ~ 1.5:1. The high velocity film of gas flows over the remainder of the
nozzle and provides a thermal protection to the nozzle with no other cool-
ing means. This results in a virtual adiabatic wall nozzle which requires
design only for pressure loading. The 1500 1bf (6672 N) flightweight
nozzle required wall thickness is on the order of 0.050 inch (0.127 cm).
This results in a very lightweight thrust chamber structure

The cooling design approach results in a major reduction in thrust
chamber fabrication complexity with only minimal sacrifice in performance.
The resulting geometries are simple shapes and lend themselves to virtually
text book analytic design with a minimum of required assumptions. As a
result the predicted thrust chamber cycle life can be accepted with high
confidence.

A detailed materials survey was conducted for the selection of the
thrust chamber fabrication materials. A-286 was selected for the nozzle,
and Berylco-10 was selected for the duct. The injector face elements
were constructed from OFHC copper. ATl remaining external parts were
fabricated from S.S.347.

The high response catalytic igniter developed earlier in the contract
effort (described in Volume I) was incorporated into the design for the
test firings. This unit has demonstrated the ability to repeatedly and
reliably ignite the high pressure thruster in both steady state and pulse
mode operation with total response times less than 50 ms.

A raised post triplet injector design was used for the experimental
firings. This injector was an extrapolation from a 900 1bf (4000 N) in-
jector developed earlier at TRW. This injector approach has proven the
ability to approach 100% combustion performance over a wide range of mix-
ture ratios. As a very high performing injector it also has a high face
heat transfer rate due to the rapid, near face mixing of the propellants.
The test results indicated that the pressure limit margin for the thrust
chamber assembly was slightly in excess of 300 psia (2068.5 KN/mz) with the
1imit being the injector's durability. Tiie limited scope of the program did
not allow for detailed investigation of the injector to improve this limit.

The demonstrated altitude delivered performance at € = 40:1 of the
thrusters at a mixture ratio of 4:1 was 432 1bf-sec/1bm (4248 N-sec/kg)
with 32% of the total GH, flowing through the duct. This is slightly
higher than the performa%ce prediction model would give. Although the
thruster experiments were not conducted with the duct at its thermal
1imit because of program limited hardware availability, the test data



strongly support a design point limit performance of 440 1bf-sec/1bm.
At this performgnce level the thermal stress limits indicate a life
in excess of 10° cycles.

The pulse mode results indicated that good pulse response could
be achieved with the Timiting factor being the catalytic igniter re-
sponse of ~ 25-30 ms. Actual thruster responses of less than 50 ms
were achieved with the use of non-optimum valving.

The resulting thermal test data also confirmed the nozzle wall
temperature profile predictiona. The peak interior nozzile wall temper-
ature were uniform to within 50°F (10°C§ at any axial location in the
nozzle.

The major Timitation in the design approach was found to be with
the high performance triplet injector as fabricated from OFHC copper.
Two minor erosion problems occurred during the test effort which neces-
sitated repairs of the unit. The high heat fluxes near the face pre-
cluded actual experimentg] data from being generated at pressures greater
than 300 psia (2068 kN/M4). The high response catalytic igniter perfor-
med quite well. The cold, high humidity environmental tests indicated
an icing problem which precluded ignition when the catalyst surfaces
were occluded. When the catalyst bed was isolated by Tow level purging

the problem was eliminated.

The firing program as a whole was quite successful. A total of 146
tests were conducted with a number of thermal duration tests.
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2. INTRODUCTION

The NASA is currently planning and studying the Space Shuttle vehicle
as a means of achieving low launch costs for space exploration and utili-
zation. The orbiter vehicle of the Space Shuttle has as one of its many
projected uses the direct application as a space laboratory. The direct
payload weight payoff function of the orbiter is, in part, determined by
its propulsion system requirements. A unit of mass in the propulsion
system is essentially a unit of mass less in payload. As a consequence,
in order to achieve the full potential of the vehicle it is desirable to
consider the use of high energy propellants. This requirement along with
the consideration of the use of the vehicle as a laboratory suggests the
use of H,/0, for the attitude control system, since the combination pro-
vides hiah nergy and is the cleanest burning of all the propellants which
may be considered.

The effort reported herein reflects an advanced technology which may
be considered for use by such vehicles as the Space Shuttle. The effort
utilizes the previously developed catalytic ignition concepts as sponsored
by NASA LeRC. The thruster concept was suggested by TRW Systems as a
logical concept for such application, particularly to meet long life and
high cycle life requirements.

This part of the "Hydrogen-Oxygen Catalytic Ignition and Thruster
Investigation" program, NASA LeRC Contract NAS 3-14347, was composed of
analytical and experimental evaluations of the duct cooling concept for
gaseous H2/0 thrusters operating at high pressure. The high response
catalytic ig%iter activity of the early part of the NAS 3-14347 was ex-
tended to this thruster program activity. Whereas the igniter activity
began in June 1970, the high pressure thruster activity was added to the
program as a limited supplemental effort and commenced in March, 1971.
The entire experimental effort terminated in December, 1971.

The objectives of the high pressure thruster program effort were as
follows:

e Provide a design basis for the use of the duct cooling con-
cept.

e Evaluate the overall thruster performance, operating char-
acteristics and durability of a cooled, near flightweight
gaseous H2/O2 thruster.

o Determine minimum impulse bit capability of the thruster
design.

® Determine the effects of environmental, humid air on the
thrust chamber assembly operation.

e Evaluate the potential of the use of the igniter flow only
as a minimum impulse bit device.



The following tasks were accomplished to meet the objectives:
® Thruster/Igniter Analysis and Design.

® Thruster Hardware Fabrication (one complete thruster
assembly).

® Thruster/System Interaction Analysis.
e Thruster/Igniter Experimental Evaluation.

This report presents results pertaining to the high pressure thruster
design. The igniter background is presented in Volume I of this report.
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3. THRUSTER DESIGN AND ANALYSIS

The entire emphasis in this part of the contracted effort was on the
TRW duct cooled approach. No other designs were considered. The approach
is described in detail in the ensuing sections of this report. To orient
the reader the overall design concept is presented first.

3.1 DUCT COOLED DESIGN CONCEPT AND FEATURES

There are undoubtedly many approaches which can be taken to the de-
sign of gaseous H,/0, thrusters for potential application to the Space
Shuttle orbiter vgh1gle. Some of the more important factors to consider
in the design are:

1. ATl propellant lead in plumbing should be integrated into the
injector assembly as much as possible. This requirement eli-
minates external appendages around the thruster assembly which
may compound variable installation geometry problems.

2. The head end assembly design should accommodate the ability to
enter the propellant feed line from: (1) in-line, (2) right
angle, and (3) reverse valve installation. The thrust chamber
assembly should be unaffected by these installation require-
ments. This makes possible a common thrust chamber and in-
jector assembly for all installations.

3. The thrust chamber cooling concept must not result in special-
ized nozzle designs for various degrees of scarfing and expan-
sion ratio requirements. This eliminates nozzle regenerative
cooling, if a common developed engine is to be adopted to all
installations.

4. The design goal for thermal and pressure loading margin on the
thruster should be an all elastic stress design. If this is
achieved high cycle fatigue design approaches can be used.

5. The selected materials should be existing, well proven, and
readily available materials. This eliminates the need for
new materials research to satisfy the design goals.

6. The injector design should not couple adversely with the thrust
chamber design. If this goal is met the injector can be op-
timized for performance, and the thrust chamber cooling can
be optimally designed without iterative interaction design with
the injector.

7. For long 1ife the valves should be set-off from the injector by
thermal stand-off plumbing and isolated struts. This prevents
soak back thermal effects on the valve seats and closures.

8. For MIB control the igniter should be designed to provide both
ignition functions and small bit propulsion functions. This re-
quires a flow rate adequate for vehicle sensing and an overall



mixture ratio which results in a temperature compatible with
the thrust chamber design. It also results in separate valve
functions for the igniter which may be met by separate valves
or integrated, two step valves.

Figure 1 illustrates the approach taken to partially meet the above
goals as well as provide a flexible research tool to meet the objectives
of the current contracted effort. Beginning at the head end of the thruster
the main valves for the flight engine are in-line poppet valves. (TRW pro-
vided Flodyne ball and in-line poppet valves for the testing of the engine.)
The main valves are pneumatically actuated by small solenoid pilot valves.

The igniter is fed by separate propellant valves. The GO. enters
axially and the GH, enters radially. The igniter operates at g core com-
bustion MR of 10:1%and an overall MR of 1:1. The igniter is centrally
lTocated in the injector. Its combustion chamber is a copper chamber
with a reduced throat to provide back pressure in the igniter at startup
to enhance ignition.

The injector is a 3-ring raised post triplet. The GH, is injected
in an axial showerhead manner from the top of the posts. %he GH, is in-
Jected as 2 impinging GO, jets onto the center GH, jet. The GO.%orifices
are recessed below the sarface of the H, posts to“minimize recigculation
effects. The GO2 manifold feeding is agially through each of the propel-
lant rings. The GH, requires a larger manifold, and this requirement is
met with the toroidal manifold. The Hy to 02 volume ratios are controlled
to provide maximum pulse performance. OFHC copper was used for the ex-
perimental injector.

Cooling is achieved through the use of a duct in the combustion
chamber. This Berylco-10 duct is mechanically anchored on the cold head
end only. The remainder of the duct is free to float radially and fore
and aft. It is designed to expand to just touch the walls of the nozzle
at steady state temperature. The GH2 flows through 90 constant width
channels and exits at a contraction ratio of 1.5:1. Heat transfer analyses
reveal that the controlling heat transfer resistance is always on the hot
gas side. This means that the duct nearly perfectly decouples the cool-
ing from the injector. As a consequence the injector does not have to
be tailored to provide a controlled wall temperature environment.

The nozzle is a thin wall configuration. The maximum thickness is
at the throat, and a continuous taper from 0.050" (0.127 cm) to 0.020"
(.0508 cm) at the exit is used. (An expansion ratio of 40:1 was selec-
ted for this program.) The GHp film pours along the nozzle wall and
provides nearly perfect thermal protection of the nozzle. The peak
nozzle temperature is selected near 1800°F (10009K) and usually occurs
at an expansion ratio of ~ 8:1. From this point on the nozzle temper-
ature actually drops6 due to internal radiation. The backwall temper-
ature Timits of 1260°R (700°K) are met in two ways. In the combustion
chamber section the wall temperature is controlled by the coolant bulk
temperature. Beyond the duct exit the surface temperature is controlled
by the use of ~ 0.125" (0.317 cm) of Mini-K insulation type batting.

Ty
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For maintainability purposes the thruster is made dissassembleable
as shown. The experimental chamber assembly was designed virtually to
the above description.

3.2 THRUSTER ANALYSIS AND DESIGN

The analytical design tasks encompassed both high and low pressure
thruster designs for 1500 1bf (6672 N). The nominal design conditions
for each case are summarized in Table 1.

Table 1. Thruster Design Conditions

Case I Case II
Thrust 1500 1bf (6672N) 1500 1bf (6672N)
Chamber Pressure 15 psia (103 kN/m2) 300 psia (2086 KN/m%)
Mixture Ratio 2.5 4.0
Nozzle Expansion Ratio 5:1 40:1
Propellant Inlet
Temperatures
Oxygen 300°R (167°K) 300°R (167°K)
Hydrogen 200°R (111°K) 200°R (111°K)
Propellant Inlet
Pressures
Oxygen 375 psia (2586 kN/m2) 375 psia (2586 kN/m%)
Hydrogen 375 psia (2586 kN/m2) 375 psia (2586 kN/m2)
C* Efficiency 98% 98%
Specific Impulse a7s 1ES€C (3677 ﬂﬁ_gg ) 435 1REZS€C (4566 ﬂsk-;i)
Igniter Propellant 1-5% of the total flow rate
Flow Rate ~

Primary emphasis was placed on the high pressure design, although
the design approach used is applicable to both the high and low pressure
designs.

3.3 THERMAL DESIGN

Detailed thermal analyses were conducted on the design utilizing an
approach which had been previously developed by TRW Systems for duct
cooled thrusters. The specific thermal design evaluations were as
follows:

e Transient and steady state temperature distributions in
injector.



® Steady state temperatures in duct and chamber for several
duct materials over a range of flow rates.

¢ For optimum choice of duct material and flow rate the
effect of varying duct length was considered.

® Steady state temperatures in duct and chamber flange
were determined.

e For optimum choice of duct material and flow rate the
transient thermal behavior of the duct was determined.

e Insulation requirements to maintain chamber and nozzle
backwall below 800°F (700.056°K) were determined.

¢ Transient temperature distributions in nozzle were eval-
uated.

3.3.1 Material Thermal Properties

A summary of the thermosphysical properties of the various candidate
materials considered in the thermal analysis are summarized in Tables 2
through 7.

3.4 THERMAL ANALYSIS OF DUCT COOLED CHAMBER AND NOZZLE

3.4.1 Background

The TRW duct/film cooling approach has, experimentally and theoretically,
been shown to be an effective method for cooling a wide range of rocket engine
designs for Hy/Fp, N204/N2H4, C3H8/F2/02 prior to this program. It essentially
consists of fabricating a duct liner which is inserted inside the chamber
shell and is cooled by propellant injection into the annular 'passage at the
injector end of the chamber. With suitable duct sizing and flow rates the
coolant side conductance will always be much greater than the gas side con-
ductance; consequently the duct is decoupled from the combustion process.

The coolant fluid exits from the duct in the convergent position of
the nozzle and will lie as a cool boundary layer close to the wall along
the length of the nozzle and will effectively cool the nozzle walls.

Among the advantages of the duct cooling concept are the following:

e Unlike conventional thrusters, duct cooled thrusters are not
life 1imited.

e Fast response and small pressure drops as well as being light
and easy to build are immediate advantages of the concept.

@ Cooling in throat and nozzle regions is generally more effec-
tive than for film cooling alone.

e Structural loads imposed on inner duct wall are small since
the pressure differential across wall is small.
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3.4.2 Analytical Techniques

5.4.2.1 Duct Cooled Region

For thermal analysis purposes the duct is depicted as below:

2 /////////

1 2 ENGINE WALL

I"—-———A L——>I

I Y, /////////////// i,

mc —aT_, h_, Pd
DI \\\\\\\\\\\\\\\ AR R

////////(///////

\\\
S\

/

=T.he, P Buct waLL

Combustion Gas Side Conditions. One dimensional Mach numbers are computed
at any axial station on the basis of the following relationship

“R* Mi y+1

ok [l (o) B0

where suffix i corresponds to some axial station

R = radius
R* = throat radius

M = Mach number

y = average gas specific heat ratio

The core mixture ratio (neglecting igniter flow) is given by

(0/F)c = 9Flo (2)
1- WH&L

where suffixes c,o refer to core and overall conditions, respectively
(0/F) = mixture ratio
wHD hydrogen flow in duct

W

HO overall hydrogen flow

11



The core mixture ratio determines the core combustion gas temperature.
The combustion temperature is then used to calculate the core adiabatic wall
temperature

v -1
—— 2
1+l 7 )y
Taw = T
aw - 'c 1+ 751 Wi (3)
_ _p /3
where R = recovery factor = Pr

Pr = core gas Prandtl number

The film coefficient for heat transfer between the hot gas and the
wall was evaluated using the Bartz simplified technique (Ref. 1) with pro-
perties evaluated at the average between the wall gas environment and the
wall temperature. The Bartz equation is given by

2 P q\8 9
_ 1 C 9 Ax )
hy = -026 [ -y (JP.» _2)( = ) ] (—A-) o (4)

throat diameter
u,cp,Pr = viscosity, specific heat and Prandtl number at stagnation conditions

where D*

Pe

c*

chamber pressure

gas characteristic velocity

o is a correction term which accounts for property variations across the
boundary layer and is given by

Q
P
'\)'—a
—
“]z
+
'\’I*
'
=
N
+
M.—a
s’
o
P
o e
+
'\){-l
1
=
~nN
oy
@

where Tw wall temperature

w = temperature exponent of viscosity, usually given a value of 0.6

Hydrogen Coolant - Side Conditions. The coolant - side convective heat
transfer established by McCarthy and Wolf (Reference 2).

0'8 0'4

.55
Nap = -025 Re  Pp, (Tw/Tp) (6)

b

12



be neglected.

X ot > >
£ 0O

=

of 1

h k
Nusselt number = ——%—9——
h
bulk thermal conductivity
hydraulic diameter in channel

coolant side coefficient
bulk Reynolds number
bulk Prandtl number

inside wall temperature
coolant bulk temperature

For the type of configurations under investigation, entrace, roughness
and curvature effects upon heat transfer coefficients are small enough to

Any effects would only improve the cooling predictions.

A heat balance is conducted at each lateral station in the duct to
evaluate temperature rise of coolant along each station.

q:

T.-T

r='p
T "I

+ +
hfn T RA

heated area per station
cooled area per station (including 'fin' effect where applicable)
duct wall thickness

wall material conductivity

For channels as shown the coolant
surface consists of the width 'w' plus
some fractions of the channel height
'1' to account for this 'fin effect'.
The degree of this fin effect depend
upon the duct material and the ratio

to w.

Analysis has shown that it

is undesirable to have 1/w>2 since the
extra part of '1' gives no additional
cooling.

-

(7)

h

Y
1
x)
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Temperature rise of fluid is given by

AT = g/m_ C

) ¢ Pp (8)
m. = coolant flow rate
c,. = bulk specific heat

Pp

Pressure drops in the duct include both momentum and friction loss
and is based upon the fundamental relationship

F P2
ap =gy v Ep—a (9)
9 9¢ch
p = density
V = velocity
F, =

d friction factor

From station to station, area changes are small and velocity and
density changes are linear then pressure drop per station is approximated

by

- ~ -2
5 (V.2 - V&) Fo V
o —5 1t O AL (10)
g 9y
(o}
+
where 5‘=-p1 2
V. +V
5 _ 172
' 22 2
Vz_vl * Y,
2

The friction factor is given by the standard relationships for smooth
tubes

_ 64
FD = —ﬁza for Red <1600
FD = ,0397 for 1600< Red <400
FD = ,316 for Red <4000 Red <100000
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3.4.2.2 Film Cooled Region

This region extends from the duct exit to the nozzle exit as shown.

e

Tci
Tr
==

Tg

In the film cooled region the temperature acting as a driving poten-
tial to the wall is dependent upon the temperature at which the coolant
exits from the duct, the hot gas temperature, and the degree to which the
hot gas mixes with the cool boundary layer. The latter is described by
the film coolant effectiveness n.

T. = - T-T !
re Tg n ( 9 ci) (1)
Trf= film recovery temperature

Tg = gas temperature

Tc. = duct coolant exit temperatures
i

Knowledge of the film effectiveness, n, as a function of axial distance
from the injection point is necessary to establish the local driving tempera-
ture at the wall.

Several boundary layer mixing models are available which consider the
mixing of the combustion gases with the coolant along the wall. It has
been found at TRW that the most effective is the approach of Carlson and
Talmor (Reference 3).

Carlson and Talmor assume that the boundary layer growth downstream of
the injection is unaffected by the coolant and write the boundary layer flow

equation

Mg *augp, L (6 - 6 *) (12)

where Mg = hot gas flow rate in boundary layer
a = mixing coefficient

15
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Qo

ke
1

velocity and density at edge of boundary layer

6 = boundary layer thickness
8* = momentum thickness
L = axial length

6 and é* are calculated assuming a one-seventh power velocity profile
by solving the integral momentum equation for an accelerating, compressible,
turbulent boundary layer on an infinite wall. This yields

(13)

4/5 s fu \'/5 f1.\%7 *an 1.\, 45
ng-.JZQcL(R.’.x) (pg/04) (;9) ('r:) W ou‘ P Pp Uy d

[
¢ e ] 0

Reg.x = Reynolds number is core based upon axial distance from coolant outlet

uspsT = viscosity, density, absolute temperature
Suffixes: e = edge of boundary layer

o = stagnation conditions

r = reference temperature

A heat balance relating the boundary layer flow and core gas flow was
similar to that adopted by Librizzi and Cresci (Reference 4) and yields

G (TTey) e
m =

c c,
i, 1-n (15)
Now _T;:TZ- .

and is therefore the film ineffectiveness to effectiveness ratio denoted by Y.

Combining the boundary layer momentum thickness equation with the
heat balance equation, s1mp11fy1ng the integral by taking o, U, = polg>»
and expressing local velocities in terms of local Mach numbers and local
density and viscosity in terms of local pressure ratios we arrive at the
final form

= .329aX, (16)

16



AR S 172 0.8
P\ (T)(LY‘) 1+ L] x 217
X, = X _e 2 M dx
] ’ xue?/ 1 ,2)]17?
9

where P = pressure
temperature exponent of viscosity (nominaily 0.6)

local Mach number

X represents the correlation for flat plate incompressible flow with
no accelerations

e ()

V]
o pc

where R, = Reynolds number of coolant at channel exit
C,S

The assumption of boundary layer growth being unaffected by coolant
injection has been examined by Chapman (Reference5) and found to be valid
when coolant flow is less than 50% of the core flow. All cases under ex-
amination are well within this criterion and this suggests that the above
approach is acceptable.

A pressure gradient correction extending flat plate incompressible
correlations to accelerating flow, was also proposed by Stollery and El1-
Ehmany (Reference6). The correlation substitutes

4
y-1 .2
1+ 7 M f’ M Y
M 0 ]+~1’—5lM (19)

for x in the X grouping.
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Experimental results obtained at TRW between 1968 and 1971 showed that
the experimental results were best described by a combination of these two
correlations. This yields as the correlating parameter for compressible
accelerating flow.

4

I
[1+_Y;1_M2 8

M 2 ] {x M‘ - Mz] dx( (20)

1+ X
2

In addition, the mixing coefficient, based upon experiments at TRW
was shown to be the form

a B_ 3 P
a=h*p f % (21)

It is noted here that this simplified form of the boundary mixing
coefficient has the effect of density (or pressure level) on it as well as
velocity gradient (implicit in the 3P/3X gradient). This is sufficient to
obtain the gross detail of the film mixing coefficients. Furthermore, it
takes a most complex phenomena and reduces it to an easily managed engi-
neering solution. In a large number of TRW experiments encompassing film
coolants with molecular weight of 2 to 32 it has been found that the sub-
sonic transonic, and supersonic mixing for thrusters at 300 psia (2086 kN/m2)
is adequately described for engineering purposes with the emperical con-
stants as

A ~0.59, B =0.34

The viscosity of the gas at the edge of the boundary layer is found
by the expression given by Bartz (Reference 1)

10 172 0.6
Mg = (46.6x107 ") (MW) (T) Lb/In-Sec ( ) (22)
MW = molecular weight
Equation (11) now becomes
T = T - ]——-‘ (T _T )
re g 1+.329aX, " 'g ¢y
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This expression is used to evaluate the driving temperature in the
film. The heat transfer coefficient between the film and the wall is given
by the Bartz relationship.

A heat balance on the wall under steady state conditions yields

i 4. 4 '

4
i -T

w 0
0

4
) (23)
subscripts i and o correspond to inside and outside of nozzle wall respectively.

Tw = wall temperature

Q
]

Stefan/Bottzman constant

e = emissivity
F = shape factor
T0 = ambient environment temperature

3.4.3 Additional Duct Design Rationale

From past experience at TRW it has been found that the most desirable
and effective design for a coolant duct is one using straight channels with
a fairly large number of channels. The latter gives a high degree of cooling
and also decouples the duct behavior from any injector flow maldistributions
However, it will also raise duct pressure drop and so requires optimization.
The choice of number of channels and preliminary dimension estimates are
presented below in the design rationale.

3.4.3.1 Limiting Parameters

The key design parameters are as follows:

1) For any given duct material there is a 1imiting maximum
temperature above which the material strength drops to
too small of a value.

2) The exit velocity from the duct should equal the full stream
velocity. If there is too great a disparity between the
two velocities excessive turbulence will be induced in the
film which results in increased mixing between the film and
the core gas flow and, hence, higher downstream temperatures.

S Ve = Voo
(24)
W -
hence _TFWTE_EW- Voo (25)
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where Q = coolant flow
(hw)e= (height x width) of each channel of duct exit

p = coolant density at exit
n = number of channels

W

(hw)e - onVoo

3. Since the duct exit pressure must equal the free stream
pressure and there is a limit on the maximum duct inlet
pressure this will put a AP lim;tation on the duct (nomi-
nally around 60 psi (413.7 KN/m¢)).

4. The land width between channels and the hot gas wall thick-
ness at the duct exit should be as small as manufacturing
tolerances will allow since these 'lands' will cause a
‘'wake' to be formed in the film. It has been found that
with wide exit Tands the wake can be sufficient to cause
burnout of the thruster walls.

3.4.3.2 Design Approach

From Timiting design parameters 2) and 4), if it is initially assumed
that the exit land width were zero, then

27R
- & (26)
we n
where
Re = chamber radius at exit
h = W
€ p VOOZnRe (27)

An estimate is then made of the heat load to the duct wall and this
will equal the heat absorbed by the coolant, and the coolant thermal pro-
perties at the duct exit are then determined.

Performing a heat balance at the duct exit region

heAc (Twi‘ Ty) = thg (T, - Two) (28)
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where h coolant side coefficient ( McCarthy & (Wolf)
= cooled area

Twi= inside wall temperature

>
|

Tb = coolant exit temperature

hq = gas side coefficient (Bartz)
Ag = heated area
Tr = recovery temperature

Ty.= outside wall temperature

Thus the required value of hc.A. to maintain a desired duct wall tem-
perature at the exit is known.

For high conductivity material
Ace= n (2h #W.) (Fin effect) - (29)

For Tow conductivity material

Acg= nHe (no fin effect) (29b)
Since he is already previously determined
Ace =21R,(2h +We) (30a)
or e
Acg =21R, (30b)
Since h, = (he,Ne) only
then ‘
ho = (n) only _ (31)
thus hcAc= (n) only (32)

Therefore the required number of channels to meet the exit heat
balance criteria can be determined. From the point of view of manufacturing
criteria it is desirable to have the number of channels divisable into 360.
Thus the number of channels is rounded off to the nearest number divisible
into 360. Another manufacturing criteria is the desirability of maintaining
a constant channel width along the length of the duct, ie. The value of
We determined will be a constant value along the length of the duct. For
high conductivity materials this is a practical criteria since heat striking
the 'lands' will be easily conducted into the coolant, even when the lands
are fairly wide the conductivity will be sufficient to avoid excessively
hot spots. With low conductivity material heat will not be conducted away
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so well from the lands and if these are wide enough may get hot enough
to burn out and so for low conductivity materials the requirement for
constant channel width may not be practical.

Based upon a specified maximum desirable wall temperature the analysis
will provide a channel height distribution along the length of the duct to
maintain this wall temperature. In general it will not be possible to
exactly meet all the geometric, pressure drop and wall temperature require-
ments and so compromises are made to allow for a practical design. 1In
general, the pressure drop and geometric restrictions are given the first
consideration since these are exactly fixed beforehand. There is some
latitude in duct temperature and it requires further structural analysis
to adequately define the temperature limitations.

3.4.4 Verification of the Thermal Model

Prior to the start of this program a series of tests was conducted in
the altitude facility at NASA MSFC on a 900 1bf (4003.2N) Hp/0y thruster,
40:1 area ratio thruster, operating at 300 psia (2068.5 KN/mé) to verify
the above described thermal model. In these tests the percent duct coolant
was varied from 20 to 30% of the total Hp flow. The tests ranged in length
from 20 seconds to 120 seconds in duration.

The primary area of thermal interest in these tests was the correlation
of behavior in the film cooled region, which was the primary region of thermal
uncertainty. Therefore, the region downstream of the duct exit was ther-
mally well instrumented. Since the duct cooled region in the combustion zone
was one where standard analytical techniques apply, a much greater level of
confidence in the analysis of this region was to be expected. In this thruster
the duct extended to an area ratio of 1.5:1 where the coolant hydrogen was
injected to become a film.

Typical temperature distribution results are shown in Figures 2 and
3 for high and Tow mixture ratios. It is seen that the model actually
overpredicts the peak temperature and predicts this peak to occur at a
location in the nozzle upstream of where it actually occurred.

The "cusp" effect is seen in all the data. The near zero gradient
dT/dX in the cusp zones means the real mixing coefficient nearby went to
zero in this region. To prove that this in fact is the case the NASA
sponsored Mass Addition Boundary Layer (MABL) Program developed at Dynamic
Sciences was used to trace the history of the "rigorous" mixing coefficient
in the MABL program. The results are shown in Figure 4. This result is
in consonance with the TRW results. Since the TRW program provides an
excellent rapid means of design solution and so well predicts the nozzle
behavior as borne out by the above results it was used exclusively to
thermally design the thruster for this program.
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3.4.5 Thermal Design Results .

The thermal design results for the various duct configurations which
could seriously be considered for this program are summarized below. The
channel analysis showed the optimum number of channels to be ~ 90. With
this number determined the other important parameters were optimized.

For the analysis the chamber and nozzle was always kept as A-286 steel.

3.4.5.1 Duct Steady State Analytical Results

Only a Timited number of analyses were conducted for the ambient temper-
ature condition and the results of this analysis using the duct cooling pro-
grams is presented in Figures 5 and 6.

Figure 5 shows the duct design parameters for a duct manufactured from
OFHC copper or silver copper, with a 1imiting .AP of 60 psi. The data show
that for reasonable nozzle and duct temperatures the coolant flow should be
around 25% of the total hydrogen flow. With a constant channel width of
.076" (0.193 cm) the inlet duct height should be .46" (0.117 cm) and the
exit duct height .026" (0.066 cm). The resulting temperature distribution
in the duct and nozzle are presented in Figure 6.

The results of the analysis for the cold propellant condition are pre-
sented in Figure 7 through 13.

Figure 7 shows the typical results of a run conducted using the on line
computer program and shows temperature distributions in duct, coolant, film
and nozzle wall.

Figures 8 and 9 present the parametric design curves for OFHC, silver/
copper, Berylco 10 alloy and A-286 steel. The results for the first three
materials are sufficiently close to enable one design chart to be used for
all three. In the case of A-286 steel the comparatively low conductivity
of this material requires small land widths along the length of the duct
and this results in the variable channel width as indicated.

From these design charts it was determined that the optimum coolant
flow rate to maintain adequate duct and nozzle temperatures is approxim-
ately 20% of the overall hydrogen flow. Figures 10, 11 and 12 present the
temperature profiles in the duct and nozzle for OFHC/silver Copper, Berylco
10 and A-286 steel respectively.

The effect of duct length is graphically presented in Figure 13 where
the maximum nozzle and duct temperatures and pressure drop are presented
for a Berylco 10 duct as a function of duct exit area ratio with a constant
coolant flow rate in the duct using duct geometry optimized for a duct
exit area ratio of 1.5:1.

Figure 14 summarizes the heat transfer coefficient at the wall along
the length of the thruster for a nominal case with a hydrogen inlet temper-
ature of 200°R (111 0K), a coolant flow rate of 20% of the total H flow and
with the duct taken to an area ratio of 1.5:1.
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3.4.6 Thermal Transient Duct and Nozzle Responses

The duct and chamber were modeled for solution on TAP. The nodal
arrangement used in the combustion chamber is shown in Figure 15 with a
simplified flange nodal selection. The flange zone was modelled separately
as shown in Figure 16. The boundary conditions for the transient runs
were derived from the previous data as input to this analysis.

Figure 17 shows the steady state duct results and Figure 18 shows
the transient results for the Berylco-10 duct. As is seen the duct will
operate at a temperature of approximately 1460 R (811K). It also has a
startup thermal time constant of approximately two seconds. This large
time constant results in a large margin of safety in the thruster for
initial starting condition control. Berylco-10 was selected for the duct
material.

The thermal response transients for the nozzle are shown in Figure 19.
Here is it seen that the throat has a response time on the order of 6 seconds,
while the exit of the nozzle takes nearly 60 seconds to respond. Such res-
ponse again is indication of the thermal margin in the duct cooled design.

3.4.7 Nozzle Insulation Requirements

The nozzle beyond the duct exit must be insulated to meet thruster
backwall temperature Timitations. For the purpose of sizing an insulation
for the thruster the previously derived temperature and heat transfer data
were used. Radiation from the backwall was assumed to take place from a
surface with emissivity of 0.9 to a sink at 0°R (0°K). The insulation chosen
was Min K. Figure 20 presents the steady state backwall temperature at
different nozzle stations for a range of insulation thickness. A thick-
ness on the order of 0.125" (0.317 cm) will keep the wall at 800°F (7000K)
in steady state.

3.4.8 Duct and Flange End Temperature Distributions

Other thermal data of interest to the design are the AT across the duct
and the gradients along the duct and nozzle near the head end. These results
are shown in Figure 21 for the various candidate duct assemblies. As is
seen relatively small AT differences occur across the duct itself. The
entire head end assembly of the unit can be expected to remain essentially
at the Hp coolant supply temperature.

3.4.9 Injector Thermal Modelling

A thermal model of the outer hydrogen and oxygen injector rings was
formulated for solution on TRW's Thermal Analyzer Program (TAP). A sketch
of this thermal model is presented in Figure 22 indicating the location of
the nodes used in the analysis. Each node is assigned a capacitance and
is connected to adjacent nodes via resistance paths as indicated in the
sketch. Propellant enters the oxygen ring at 3000R (166.68°K) and the hydro-
gen ring at 200°R (111.12°K).
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Heat Input to the injector surface could only be approximated as the
complex recirculating flow pattern in the immediate vicinity of the injector,
does not allow for accurate evaluation of this quantity. However, based
upon previous experimental results and from the geometry of the injector
the following assumptions were made for the thermal loading on the injector.

3 BTU/inZ-sec(4.902 Mwatt/mz) over the projected
exposed area

2 BTU/in"-sec (3,268 MWatt/mZ) over the projected
exposed area

The average heat transfer coefficient to the cool gas in the injector
orifice is estimated by using the relationship for orifice flow with a non-
fully developed boundary Tayer. (Reference 7)

Hydrogen ring §/A

Oxygen ring g/A

.14

- 2/3 ]/3 2/3 UB -
N, = .16 [REd - 123] P73 1+ (drx) [———]
] W (33)
where Wﬁ = average Nusselt Number in orifice
1
Re = Reynolds number in orifice
Pr = Prandtl number
= diameter of orifice

X = length of orifice

vg = viscosity of propellant at bulk temperatures

Moo= viscosity of propellant at wall temperature

In the annular manifold the coolant side coefficient is given by the
relation for flow in an annulus

hy, = .021(1+2.3 dh/L> Cp oV (34)

.2 2/3
Re Pu

dh = hydraulic diameter of annulus

—
]

length of annulus

Cp = bulk specific heat
p = bulk density
v = fluid velocity
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Q/A = 3 BTU/SEC-IN?

* Q/A = 2 BTU/SEC-IN?

y

. ® e = Indicates nodal location

!

o
-260°F -160°F

Figure 22. Injector Thermal Model
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the results of the analysis are shown in Figure 23 for the 2 rings. The
transient response results show the injector to have a response time of
v 9 seconds.

3.4.10 Stress and Life Analysis

Both the thrust chamber duct and the nozzle lend themselves quite
nicely to rigorous analytical stress analysis. Thin shell theory is
readily applicable and has been used exclusively in the design efforts.
Final analyses were conducted using the Shell Computer Program developed
in NASA Contract NAS 9-4552.

The Rhome and Hass program was used for the injector. The rudiments

of the design approach are summarized here. For the purposes of the stress
analysis the following was assumed.

® PRELIMINARY CHAMBER GEOMETRY SELECTION

L* = 18 inches (45.72 cm)

Contraction Ratio = 4.0 (with tapered inner wall contour)
Nozzle: 80% Bell

Duct Exit Plane Location: €. = 1.5 to 2.5

e CHAMBER WALL

Thin-walled Outer Shell/Nozzle: A286
Duct Liner: OFHC Copper/Copper Alloy

o DUCT DESIGN APPROACH

Straight Channels
Internally Fed from Injector H2 Manifold

Of primary interest here js the expected fatigue life. The basic
starting point in the analysis is the Manson universal slope equation to
find the total strain range.

3.5¢0
T -0.12 0.6 ,, -0.6
Aep = — Ne + 070 Ng (35)
where

Aet = total strain range

o, = ultimate tensile strength

E = modulus of elasticity

D= 0 (g

RA" = reduction in area
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The stress analysis considered the effects of:

e Pressure Loading

e Thermal Stress

e Combined Fatigue and creep damage
o Dynamic Stress

As indicated above the duct concept lends itself to text book formulation.
Prior to using the thin shell program the duct and nozzle were analytically
described as illustrated in Figure 24 for the axial and meridional stresses
introduced into a cylindrical element by the loads on an element. From
this analysis the basic understanding of the thruster was derived and the
geometry was programmed into the Shell Computer Program, as schematically
illustrated in Figure 25.

At elevated temperatures where intercrystalline cracking may occur
due to the effects of creep, the above rule was modified by the use of the
“10% Rule." 1In the use of this rule the fatigue life is taken ag 10% of
that predicted by the universal_slope method. Therefore, for 10° cycle
life, the designer uses N¢ = 107 in the universal slope equation and the
permissible total strain range is determined. The calculation fatigue
stress range with mean stress O = 0 is found from

oo=i-;—Aet-E (36)
From this result and available test data for the candidate materials. The
fatigue stress range o_ was obtained by proportioning the above theoretical

results. Modified Goodman diagrams were used to calculate the fatigue
stress 0, S follows:

+G f\
Ta + Im -1 g / \
o %y =%
g, T
o, = ﬁ- /\ n Y | | B
a
T JY \J m
To fatigue stress range with mean stress Tn=9°
o= fatigue stress range with mean stress ° A
o = material ultimate strength
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The total fatigue stress range is given by 2°a'

To include the combined effects of fatigue and creep the three
approaches illustrated in Figure 26 were considered. The third method was
selected, since it is felt to be most conservative and makes direct use of
experimental data illustrated in Figure 26.

To facilitate the use of this analytical approach fatigue-temperature
diagrams for the candidate materials are prepared from which one can directly
determine the design stress allowables when the temperature distributions
are known. Typical results are given in Figures 27 through 30.

The computer results for the A-286 nozzle are given in Figure 31 for
the 10° cycle use without creep, 10 hrs and 50 hrs creep. The immediate
observation is that the thin wall nozzle has a very large fatigue-creep
margin, and no concern should be expressed over its life capabilities.

The initial results for the duct are shown in Figure 32. Here it is
seen that both the analytical model and the computer model predicted an
excessive stress at the beginning of the duct. To solve this potential
problem a small amount of GHy film cooling (5%) was added to the hot gas
side. This removed the duct temperature discontinuity effect, and
Figure 33 shows the resultant stresses, indicating that the 106 fatigue
cycle limit can now be met.

There also exists the possibility of destructive startup transient
effects in the nozzle wall at the throat. Because of the thin wall and
reduced driving temperature with the duct coolant, this problem is re-
duced to negligible proportions with the A-286. The results are shown
in Figure 34.

The more complex triplet injector geometry was analyzed strictly by
computer program. The results are given in Figures 35 and 36 for both
ambient and reduced temperature propellants.

A thruster dynamic stress analysis was also conducted for the model
shown in Figure 37. The analysis resulted in the conclusion that there
was no problem here.

The Tow pressure thruster was analyzed in exactly the same manner
as above. The entire results for the low pressure thruster are summarized
in Figure 38.

The stress analysis conclusions were as follows:

o Fundamental theories of beams on elastic foundation, theory
of elasticity, theory of plates and shells (Hetenyl and
Timoshenko) are directly applicable.

¢ A1l components have margin of safety based on 106
fatigue and 50 hours creep damage.

cycle
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e Llarge margin of safety for re-entry induced stress at
maximum circumferential gradient of 2000°F (1366.78°K)
to 1200°F (922.296°K) and maximum axial gradient of
2000°F (1366.78°K) to 1200°F (922.296°K) over initial
3 inches (7.62 cm).

3.4.11 Performance Prediction Approach

The theoretical behavior of H /02 propellants is current propulsion
state-of-the-art. Consequently, tgis type of data is not presented here.
The injector design approach from a performance point of view is of inter-
est, and the engineering method used for gaseous propellant injectors at
TRW Systems is summarized below.

Starting from the premise that combustion efficiency is governed by
turbulent mixing of the two propellants after some initial mixing, an
analytical expression is formulated for the combustion efficiencies as
a function of the hydrogen jet radius and the distance traveled by the
propellants. The axial mixing is governed by Equation (33) below (Ref-

Y =1-e¢e

erence (7):
1
| kxme' /¢ - 0.70 (33)
0

where Y0 = centerline concentration

This expression covers the case of a gas jet in a continuum of another gas
specie and relates the axial concentration (or mixing) variation. It is
postulated that the combustion efficiency for this case would be related
to 1 -Y_ or:

n

1
- EO“’e]/Z - 0.70] (34)
ﬂc* =e
where: k = constant (determined experimentally)

X = x/rj
£ = axial distance
rj = jet radius
Pe = oe/oj
Po = density of continuum gas
3 = density of jet gas

In order to more closely simulate an actual rocket engine injector,
Equation (35) is modified to account forinteraction between adjacent jets
caused by small inter-element spacing.
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_c
[kiﬁel/z - 0.7(1 (35)

where: ¢ = interaction parameter

Mer = e

This expression has been used to correlate experimental data from
various sources for different injector geometries as shown in Figure 39.
The constants k and ¢ are found to have limits within which Equation (35)
can be adequately used to describe the axial combustion efficiency vari-
ation. As seen the constant k varies between 0.03 and 0.10 and is re-
lated to the degree of initial mixing. Thus, for a showerhead injectors
with very Tittle initial mixing k is 0.03 with resulting greater lengths
required for high performance, whereas a triplet injector has a great
deal of initial mixing with corresponding shorter lengths required for
good combustion efficiency. The interaction parameter, ¢, is a measure
of the interaction between adjacent jets which can result in enhanced
mixing. This constant is thus a function of the pattern fineness or
inter-element spacing.

_To determine the effects of other engine parameters, the expression
for x can be generated as follows:

X = X
X == (36)
J
1/2
o [ F 1.5
where x = — - 3 (TTC B ) cot B (sc - 1) (37)
c € F ¢
c
L* = characteristic chamber length
€~ chamber contraction ratio
F = thrust
CF = thrust coefficient
PC = chamber pressure
0 = chamber contraction angle
and AL 1/2
r., = [—J—] (38)
J n.
J
Aj = total flow area of jet
nj = number of jet orifices
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Equation (37) can be written as follows for B = 40° and C. = 1.70
since these parameters will not vary too much for different caEes.

1/2 [E 1.5_,
L* F c
(o= oo—- 13 (- e 39
X Ec (c) EC ( )

Equation (38) can be transformed by using the expression for compres-
sible gas flow and by taking the case of: O0/F = 4.0 with Min‘ = .6, CD =
.75, T, = 530°F (550.04°K), vy = 1.41, and M = 2.016, J

This results in the following:

) 1/2
=s ()
i 7 (40)

Combining Equations (39) and (40) results in the following expression
for the nondimensional axial coordinate:

1.5
P \1/2 /2 fg. 71

- _ X _ L* . ¢ . C

e sl ()" w (e o

Examination of Equations (35) and @1) results in the following con-
clusions concerning the effects of the various engine parameters on com-
bustion efficiencies:

—r

a very fine injection pattern is desired

~N

)

) strong initial mixing is desired
) long chamber length is desired
)
)

& W

low chamber contraction ratio is desired
and

5) Tlow ratio of thrust to chamber pressure is desired.

Substituting the appropriate engine parameters for the nominal high
and Tow chamber pressure thruster designs into Equations (35) and (41)
results in the combustion efficiency - L* curves shown in Figure 40. The
required characteristic chamber length for the high chamber pressure de-
sign to achieve a combustion efficiency of 98% is about 14 inches (35.56 cm).
This compares to an L* of 25 inches (63.50 cm) to achieve nex = 98% in
the low chamber pressure design,

The basic results are then modified slightly to provide for uniform
flow across the face of the injector. This results in a slight decrease
in thrust/element for the inner ring elements. At no time is the thrust/
element allowed to exceed the theoretically determined values. As is seen
in Figure 40, the 144 element triplet for the high pressure engine is pre-
dicted to achieve 99+% combustion performance.

59



(N 2499 39l 00SL = 3Snayl) 391 00SL
ISNAY] - SPuUdU] JDJUBWIOJUB{ 433SNUY] NO\N: Snoasey pajdLpadd O aunbr4

(9°tol)  (¥°52) (91°oL) (9°101) (v°62) (91°01)
(v52) (08°05) (¥e2'SL) (80" (v52) (08°05) (¥z'sl)  (80°S)
. " m i . T,L e |
! B
e :
_ s peely
Asuv wuhuz_: AEurmzuzww R ; n.ﬂﬁ i
o oy ,E_W_N;, as 00l o JHHEH o2 T ,ME s My zﬁ )
i H i Jga -
b _wa 0 - v...
INIH3T3 13 1dTHL inien L -SIMIW3TI 137dIYL 89L | ! ! 1 B
6§’y = t “ (g = HiIee iy
0% = 4/0 6'Z = 4/0} . a8
(Fu/Ny 678902) (W/NY v eol) i O
¥ISd 00€ = °d YISd Gl = d 35RES | MM
H o i At Ee.,
1 [ J H Lﬁﬂ b G
I - s
! u%mm_uE :3 o8 il
1 H-4- il s i
- T : ,v ,.
; M . | _

60



Both a rigorous and an engineering performance model were utilized to
predict the performance of the TRW duct cooled concept. In the ready
estimating procedure, the procedures outlined in CPIA 178 were followed.
The JANAF ODK reference computer program and the CPIA 178 data were used
to account for all but the cooling effects. Since the former are standard
industry methods, they are not repeated here. The cooling interaction
method is of interest, however.

With cooling the ISp of the core is degraded as follows:

He - Hy - ah ]1/2
Isp (core) = Iep (core) [ CH = ]
c

where : Hc = chamber enthalpy at core O/F

he = exit enthalpy at core 0/F

Ah = energy transferred from core 0/F) (1 - Y/2) - Y/2

to coolant (0/F)core = T4 s
o= Tcool/mHz
L migniter/ﬁT

Enthalpy in the core is transferred to the film coolant. Treating the
problem as a two-zone problem, the coolant ISp contribution is:

-He+Ah]
He - H

H
Isﬁ (coolant) = ISp (coolant) [ ¢

€ coolant

Of course, the coolant loses mass and the core gains mass as given by the
previously described mixing coefficient ralations. The IS of the chamber
is computed from: P

Isp (TCA) = %—- [Isp’ (core) °

b |

+ 1 b (coolant) - Weoolant

WCC) re S

+ I, (1g) J«Ig]

The accuracy of this simplified approach with mixing properly accounted for
has been verified in MSFC tests of the duct coolant concept. This correla-
tion was then used to prepare the predicted performance map as shown in
Figure 41.
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3.5 THRUSTER MECHANICAL DESIGN AND FABRICATION

This section discribes the mechanical design of the thruster and its
fabrication. The overall assembly cross-section is given in Figure 42.
As seen in the cross-section the valves are shown on a stand off plate for
thermal isolation. The catalytic igniter (described in detail in Volume I)
is shown in the center of the triplet injector. The igniter nominal flow
rate is ~ 2% of the total flow, and the flow is controlled by two separate
flow control valves. The duct coolant flow and the interior film coolant
flow split is controlled by a replaceable flow control ring for the experi-
mental engine. The duct is mechanically clamped in place by the nozzle
flange being bolted onto the head end assembly. As shown the duct itself
floats freely inside the chamber.

3.5.1 Injector Hydraulics

The triplet injector is designed with three rings of 0,-H,-0, triplet
elements. Forty-eight H, orifices and 96 0, orifices make p gac of the
three rings of triplets.” The orifice diame%ers are varied for each ring

to provide a relatively uniform mass distribution over the cross-sectional
area. The injection geometry is presented in Figures 43 and 44 for the
cold propellant design and for the ambient temperature design, respectively.
The internal manifolding is designed for low Mach numbers to reduce circum-
ferential flow variations. For cold propellants, the maximum Mach number
at rated flow is 0.06 for the H, and 0.09 for the 0,, (Figure 45). With
ambient temperature propellants$ the maximum interngl Mach numbers are

0.12 (Figure 46). The injection Mach numbers are 0.47 for the H, and 0.41
for the 0,, which corresponds to a pressure drop of approximate1§ 50 psi
(344.75 KN/mZ) at nominal chamber pressure. The internal manifolding is
designed for a volume ratio of 4 to reduce mixture ratio transients during
pulse mode operation. The dynamic response of the engine is Timited by
valve response rather than manifold volumes, as indicated in Figure 47.

3.5.2 Injector Design and Fabrication

As discussed earlier the injector selection was a raised post triplet
with 144 elements. The design detail is given in Figures 48, 49, and 50
for the hole pattern, body, and back body. The injector rings for the
experimental injector were OFHC. For the flight thrusters they would be
Berylco-10.

The injector inner body assembly is a brazed assembly as shown in
Figure 51. The rings are first brazed into the center body. The center
body in turn is brazed into the S.S. 304L body.

The back side of the injector assembly is an all welded body, Figure
52. A1l of these parts were S.S. 304L.

The hole pattern is EDM into the assembly after its final braze and
pressure check. The final injector assembly is shown in Figure 53.
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MIXTURE RATIO
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3.5.3 Duct Design and Fabrication

The duct is a single piece Berylco-10 configuration with 90 channels
The design detail is shown in Figure 54 and the finished product is shown
in Figure-55.

3.5.4 Nozzle Design and Fabrication

The nozzle is a single piece A-286, 40:1 nozzle for the altitude firings.
Its design is shown in _Figure 56. The nozzle is an 80% bell contour. The
chamber has a nearly 3" taper in it to provide a guiding surface for the duct.
The Section B is at an area ratio of 12:1. Short S.S. nozzles of 12:| were
used for sea level checkout firings. The nozzles were machined from pierced
billets. A finished nozzle is shown in Figure 57.

3.5.5 Catalytic Igniter

The high pressure catalytic igniter selection was based upon design
guidelines established during the igniter scaling analysis described in
Volume I of this contract report. The downstream 0, injection technique
was incorporated to minimize overall igniter response time, as experi-
mentally determined during the response enhancement investigation (Section
3.2.2., Volume I).

The high Pc igniter design is shown schematically in Figure 58.
The volumes and flow resistances were selected to allow 07 to pulse
through the system and diffuse backwards through the downstream end of
the catalyst bed, this 0 being intercepted by the low MR (less than 1:1)
H2-02 mixture from the upstream end. The pneumatic design of the unit
was investigated by analog modeling of the results from the igniter scaling
analysis. Overall mixture ratio is 1:1, with 90 percent of the total Ho
flow utilized for cooling the reactor combustion chamber.

Ten percent of the igniter Hp and 0p passes through the catalyst
bed at a MR of 1:1 or lower. The remaining 90 percent of the 02 is in-
jected downstream of the catalyst bed to provide high response ignition
and to raise the local MR to 10 O/F to provide a high temperature effluent
for reliable main thruster ignition.

3.5.6 Qverall Thruster Assembly

The overall assembly drawing is shown in Figure 59. This figure
gives all major dimensions. The actual thruster assembly is shown in
Figure 60.

3.5.7 Thruster Material Tradeeff Summary

The material selection philosophy for the thruster assembly nozzle
was based on a philosophy which would not allow any new material develop-
ment requirements. The pro and con factors considered are given in Table
8. Effects of Hy are shown in Figure 61. From these results the
primary material sélection were taken as A-286 for the nozzle and Berylco-10
for the duct.
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Effect of Hydrogen on Selected Properties of Some Candidate Thruster Materials

Figure 61.
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3.5.8 Low Pressure Thruster Design

The Tow pressure thruster design cross-section is included here for
reference purposes. It is shown in Figure 62.

3.6 ‘THRUSTER/SYSTEM INTERACTION ANALYSIS

Analysis of the pulse mode operation of the 1500 1bf (6672 N)
thrusters was performed for each set of operating conditions previously
specified in Table 1. The minimum impulse bit ?M]B) capability of the
complete thruster/igniter assembly (including igniter-only operation) was
determined analytically, and the environmental effects on MIB and steady-
state performance were also evaluated, as described in the following
sections.

3.6.1 Thruster/Igniter MIB Analysis

MIB analyses were conducted using lumped parameter dynamic computer
models developed to simulate flow rates, pressures, and propellant reactions
throughout the actual thruster, igniter, and propellant feed system volumes.
Comparison of these model outputs with test firing data has shown good
correlation.

Figure 63 presents typical computer data comparing igniter-only and
full thruster pulse-mode operation. Response times of 10 milliseconds for
the igniter valves and 25 milliseconds for thruster valves were selected
for this particular computer run. Data from a simulated full thruster
firing without and with feed systems are presented in Figures 64 and 65,
respectively, indicating the increase in MIB caused by feed line volumes.

The results of the full thruster MIB analyses are summarized in
Figure 66 for the high pressure, 1500 1bf (6672 N) thruster. Although
propellant supply pressure and temperatures have some effect, thruster
MIB is mainly a function of valve response time, as indicated in Figure 66.

Igniter-only MIB analyses are presented in Figure 67. MIB is
obviously a direct function of igniter flow rate, expressed as a function
of nominal overall thruster flow rate in Figure 67. Igniter valve response
effects are indicated in Figure 67. The results in Figure 67 indicate
that manifold volumes have 1ittle effect on MIB. Igniter-only MIB is
affected mainly by valve response time and, of course, by igniter flow
rate.

MIB analyses were also performed for the 1500 1bf (6672 N), 15 psia
(103 kN/m2) thruster. Design and analysis only were conducted for this
thruster; no hardware fabrication or testing was performed during this
program.

The results of the MIB analyses for the high thrust, low Pc thrgster
are summarized in Figure 68. Again, one of the major factors affecting
thruster and igniter MIB is valve response time, as shown in Figure 68.
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Figure 66. Thruster MIB Analysis - High Pc
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Figure 67. Igniter-Only MIB Analysis - High Pc
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Figure 68 indicates that igniter flow rates have a significant effect
on igniter-only MIB but have a negligible effect on MIB if the full
thruster is fired, as expected.

The overall thruster/igniter MIB analysis results indicate that
thruster or igniter MIB is largely a function of valve response time.
Extremely low MIB values for thrusters of this size (less than 1.0 1bf
sec B.448 N/sec]) were shown to be attainable by firing the igniter only.
These MIB predictions were later verified by full thruster and igniter-
only test firings, as described in Section 4.
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4. HIGH PRESSURE THRUSTER EVALUATION TESTS

The following test series were conducted.

e Injector performance tests with a copper heat sink chamber,
with no duct installed, at sea Tevel conditions to document
core c* performance and heat transfer to the chamber walls
over the mixture ratio range with ambient temperature pro-
pellants.

e Combustion performance tests with a duct cooled stainless
steel chamber at sea Tevel conditions to document c* per-
formance at different duct flow levels over the mixture
ratio range.

e Altitude tests with ambient temperature propellants and
with cold propellants to document specific impulse perfor-
mance and thrust chamber temperatures at different duct
cooling flow levels over the mixture ratio range.

e Pulse mode tests to document minimum impulse bit perfor-
mance and duct cooling characteristics.

e Igniter-only tests to document minimum impulse bit perfor-
mance and cooling requirements.

Test description and test results are presented in the following
sections.

4.1 PERFORMANCE TESTS

4.1.1 Injector Performance and Uncooled Thrust Chamber Heat
Flux Determination

4.1.1.1 Test Description

Tests were conducted in the TRW Vertical Engine Test Stand VAT, which
was used for both sea level and altitude tests (Figure 69). The engine
installation with the heat sink chamber is shown in Figure 70. Engine
instrumentation is shown in Figure 71. The primary flow measurement con-
sisted of sonic orifices, with close coupled upstream pressure and tempera-
ture measurement. The sonic orifices were calibrated in the test stand
using an NBS calibrated Quantum Dynamics flowmeter with the pressure
and temperature instrumentation used for the engine tests. Heat flux was
determined using temperature measurement of the external surface of thermal
isolation plugs. Heat flux measurement location and Photocon installation
Tocation are indicated in Figure 72. Igniter flow and main propellant flow
were controlled by Circle Seal valves and Flowdyne valves, respectively.

A photograph of the valves mounted on the injector is presented in Figure 73.
A spark igniter installation, used for the injector performance tests, is
shown in the photograph. Close-up photographs of the igniter and main
propellant valves are shown in Figure 74.
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Prior to the hot firing tests the injector was water flowed to determine
if internal manifolding was free of burrs, chips or braze material. A
photograph of the water flow indicating the uniformity of the flow pattern
is presented in Figure 75.

4.1.1.2 Test Summary

A summary of the performance data is presented in Table 9. Core
mixture ratio was varied from 3.8 to 6.0 which would correspond to an over-
all mixture ratio of 2.9 to 4.5 with 25 percent duct cooling flow. Corrected
core c* efficiency is essentially 100 percent over the mixture ratio range
(Figure 76). (The calculation procedure is presented in Appendix A.) The
chamber heat flux determined from the temperature measurements was consistent
with chamber design values (Figure 77). The igniter flow was approximately
2 percent of the total propellant flow. A hydrogen flow of approximately
5 percent of the total hydrogen flow was injected along the chamber walls.

The rapid dynamic response of the thruster during start transients is
indicated by the oscillograph traces presented in Figure 78. Chamber
pressure overshoot was minimal as indicated by the photocon traces.

The short duration tests with the triplet injector indicated a recircu-
lation of gas from the igniter occurred at the inner oxidizer ring. The
recirculation was reduced by extending the steel sleeve of the igniter so that
the tin extended 1/8 inch (.3175 cm) beyond the face (H5 rings) of the injector.
This reduced the hot gas recirculation, but the inner oxidizer ring required
a clean up cut of 0.033 inches (.0838 cm) after the test series. A redesign
was proven to be satisfactory in the longer firing duration test series with
the duct cooled chamber, as described in the following section.

4.1.2 Coocled Thruster Performance Tests

4.1.2.1 Steady State Firings Installation

Sea level tests were conducted with a duct cooled stainless steel thrust
chamber (e = 12) to determine C* and thermal performance. The configuration
allowed rapid visual inspection of the installed duct and injector face
between firings. A photograph of the engine installation is presented in
Figure 79. Flow and injector pressure instrumentation was essentially the
same as for tests with the heat sink chamber. The hydrogen flow to the
duct was calculated from measurement of the pressure differential across the
replaceable duct flow control orifice ring. Chamber pressure was measured
at the injector face.

4.1.2.2 Test Summary

The test results are summarized in Table 10. The C* efficiency is 94 to
95 percent at a ratio of duct cooling flow of 27 percent of the total hydrogen
flow at a mixture ratio of 4.2 (Figure 80). The C* performance increases to
98 percent as duct flow is decreased to 16 percent of the total hydrogen flow.
Once confidence had been established in the firing procedure, the catalytic
igniter was substituted for the electrical igniter as indicated in Tahle 10.
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Figure 79. Duct Cooled Engine Installation with 12:1 Exit Area Nozzle
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A duct fabricated from OFHC copper was used for the initial tests
because the copper material was readily available for duct fabrication.
The long lead time for delivery of the Berylco-10 material, for which the
duct was designed, delayed fabrication of the design duct configuration.
The much lower structural strength of the OFHC copper was evidenced by
collapse of the duct during shutdown transients. The OFHC copper duct,
reaching approximately 1000°F (811.18°K) within 1-2 seconds of engine
operation, collapsed inwards because the chamber pressure decay was more
rapid than the pressure decay in the duct. The copper duct was prepaired
by rolling out the collapsed region and was used in subsequent tests. No
structural problems resulting from pressure differentials were encountered
with the higher strength Berylco-10 duct.

Hot gas recirculation across the face of the inner oxidizer ring during
initial tests at sea level resulted in some melting in this region. The
recirculation was eliminated by replacing the inner oxidizer ring with an
oxidizer ring with the impingement angle, with respect to the axial H
orifices, reduced from 20° to 10°, setting back the face of the inner
oxidizer ring by 0.050 inches (.127 cm) and decreasing tie igniter flow from 2
percent to 0.8 percent.

4.1.2.3 Altitude Firing Installation

With the catalytic igniter, injector, and duct fully checked out, the
testing activity turned to the altitude firings. Both ambient and reduced
temperature propellants were used in their tests. A photograph of the test
installation is presented in Figure 81. The thin steel wall chamber was
instrumented with thermocouples fore and aft as well as three locations
circumferentially.

4.1.2.4 Test Summary

The test results are summarized in Table 11. The experimentally
determined specific impulse, corrected to vacuum, is 432 seconds at a
mixture ratio of 4.0 with a duct coolant flow of 32 percent for ambient
temperature propellants. The specific impulse and C* performance over a
mixture ratio range from 3.0 to 4.8 is presented in Figure 82. The range
of chamber pressures tested was 1imited because the initial test results
at the nominal level of 300 psia (2068.5 KN/m) indicated that hot gas re-
circulation patterns were occurring at the outer rings of the injector
causing higher heat transfer levels than anticipated. (The fixes described
previously to the inner oxidizer ring resulted in no further overheating in
this region.) During the latter tests, it was discovered that the protruding
OFHC copper injection rings were imploded, resulting in some mixture ratio
maldistribution. A transient negative pressure differential apparently
occurred during startup across the injection rings for some of the ignition
sequences which were used. Distortions of the internal flow passages may
have been responsible for higher heat flux which occurred in local regions.

Numerous firings were conducted with the Berylco-10 duct with no diffi-
culty. Figure 83 shows the duct after a 60-second firing and a total of
40 runs indicating its excellent condition. The corresponding nozzle temper-
ature data are shown in Figure 84. A1l of this thermal data indicated
strongly that excellent circumferential thermal control was being achieved
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Figure 81. Test Installation of Altitude Thrust Chamber
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P Injector Flow Igniter F

C
Test'! o) H 0
Test Duration b /i 2 2 z 2 b 2 kg/
No. (sec) f/m kN/m 1b/sec kg/sec Ib/sec kg/sec [sec g/sec
944 0.2
945 0.5 223.1 (1538) 1.823 (.8269) 0.576 (.261) . 0095 (.0043)
946 no ign
947 1.0 213.9 (1474.84) 1.687 (.7652) 0.574 (.260) . 0085 (.0039)
948 no ign
949 0.2
950 1.0 216.5 (1492.77) 1.963 (.8904) 0.510 (.231) . 0069 (.0031)
951 (.0 201.3 (1387.96) 1,821 (.8260)  0.452 (.205) . 0076 (. 0034)
965 0.15 -
966 1.0 291. 7 (2011,27) 2.728 (1.237) 0.013 (. 0059)
967 6.0 295, 0 (2034, 03) 2. 742 (1.244) 0,640 (.290)
969 1.0
970 6.0 291. 1 (2007.13) 2. 771 (1.257) 0.638 (.289)
971 0.15
972 0.15
974 2.0 286.0 (1971.97) 2. 644 (1.199)  0.635 (.288)
975 1.0 277.1 (1910.60) 2. 721 (1.234) 0.558 (.253)
976 1.0 279.7 (1928, 53) 2. 654 (1.204) 0.592 (.269) 0.014 (. 0064)
977 2.0 292. 6 (2017.48) 2.413 (1.095) 0.803 (.364)
978 2.0 300. 6 (2072.64) 2.671 (1.212) 0.718 (.326)
979 1.0 277.7 (1914.74) 2. 711t (1.230) 0.571 {.259)
980 2.0 290. 6 (2003. 69) 2. 652 (1.203) 0.664 (.301)
983 0.10
984 0.075
985 0. 050
986 0. 050
987 0. 050
988 2.0 295,71 (2038. 85) 2, 867 (1.300)  0.670 (.304)
999 2.0 307. 6 (2120.90) 2. 698 (1.224) 0.732 (.332)
1000 10.0 304. 1 (2096. 77) 2. 697 (1.223)  o0.724 (.328)
1001 290
at 1.3 309.9 (2136.76) 2. 727 (1.237)  0.737 (.334)
10 306.9 (2116.08) 2. 729 (1.238) o0.731 (.332)
48 306.4 (2112, 63) 2. 737 (1.242) 0.728 (.330)
100 310.5 (2140.90) 2. 826 (1.282) 0.724 (.328)
150 313.5 (2161.58) 2. 896 (1.314) 0,720 {.327)
200 316.5 (2182.27) 2. 938 (1.333) 0.724 (.328)
250 318.8 (2198.13) 2. 969 (1.347) 0.730 (.331)
259 319, 0 (2199.51) 2. 975 (1.349) 0.712 (.323)
269 319. 6 (2203, 64) 2. 978 (1.351) 0.697 (.316)
279 320.3 (2208, 47) 2. 984 {1.354) 0.682 (.309)
287 320. 8 (2211.92) 2.990 (1.356) 0.670 (.304)

(l)Tests far which data not shown did not yield reliable steady state performance

(2)

Includes duct flow

(3)Specific impulse extrapolated to AC/At = 40 for cold propellant tests with nozzle Ac/At =12
Test Configuration: X408170 Triplet Injector (-3 ambient propellant temperature design; -4 co.
temperature design used for tests with cold propellant
X408169 Thrust Chamber (Ac/A¢ = 40, except Ac/Ay = 12 nozzle used for t
cold propellant)
X408163 Duct (-1 ambient propellant temperature design; -2 cold propellant
used for tests with cold propellant
Flodyne Propellant Valves
Circle Seal Igniter Valves
X408260 Catalytic Igniter

FOLDOUT FRAME /






Table 11. Altitude Test Summary

low Duct
Coolant vsf
T Ybe cr Fvae Ibosee Mo
2 X100 MR (Overall) cuum 5 Nsec (Overall) Comments
tb/sec kg/sec H2 O/F ft/sec m/sec lbf N 1b kg
m
3 Cold Propellant
L0165 (.0075) 26 3.095 8237.7 (2511) 990.2 (4404) 4438 (4352) 98. 4
L0161 (.0073) 25 2.873  8378.2 (2554) 954,3 (4245) 453.7  (4449) 99.7
.0183 (. 0083) 25 3.729  7796.2 (2376) 1006. 6 (4477) 435.8  (4273) 94,3
. 0156 (.0071) 30 3.914  7850.3 (2393) 919.3 (4089) 435,2  (4268) 95. 6
0. 014 (. 0064) 37 4.308  7641.0 (2329) 1425.7 (6342) 422.2  (4140) 94. 0 Ambient Temp.
4,219  7657.3 (2334) 1453, 7 (6466) 426.6  (4182) 94. 0
4,271 7494.2 (2284) 1470.3 (6540) 427.9  (4196) 92. 1
32
4. 10 7654.5 (2333) 1424.5 (6336) 431,0  (4226) 93. 6
4,781 7414.7 (2260) 1382.7 (6150) 418.2  (4101) 92.7
4.409 7560.5 (2304) 1383.1 (6152) 422. 6  (4144) 93. 4
2.973  7980.5 (2432) 1416. 0 (6298) 436.6  (4281) 95. 4
3.668  7782.4 (2372) 1478.1  (6575) 432.6  (4281) 94. 2
4.659  7422.6 (2262) 1381.4 (6144) 417.4  (4093) 92. 4
3.934  7689.9 (2344) 1459. 1 (6490) 436.5  (4280) 93. 6 Pulse Tests
4.194  7368.3 (2246) 1478.7 (6577) 416.5  (4084) 90. 4
3.619  7901.8 (2408) 1499. 6 (6670) 435.4  (4270) 95.5
3.655  7833.1 (2388) 1496.6 (6657) 435.7 (4272} 94. 7
3.631  7882.8 (2403) 1508.2 (6708) 433.6  (4252) 95.3
3.644  7816.5 (2383) 1518.8 (6756) 437.2  (4287) 94. 6
3.690  7791.4 (2375) 1531.5 (6812) 440.2  (4317) 94, 3
3.828  7708.2 (2349) 1562.5 (6950) 438.4  (4299) 93. 6
3.944  7641.2 (2329) t587.6 (7062) 437.4  (4289) 93. t
3.976  7616.7 (2322) 1603, 6 (7133) 436.2  (4277) 92.9
3.987 7594.4 (2315) 1621.7 (7213) 436.7  (4282) 92. 6
4,092  7623.0 (2324) 1613.7 (7178) 435.9  (4274) 93.2
4. 185  7662.6 (2336) 1606.7 (7147) 435.4  (4270) 94. 0
4.285  7699.3 (2347) 1597.7 (7107) 434.7  (4263) 94. 7
4,368 7724.0 (2354) 1565. 8 (6965) 426.1  (4178) 95. 2

d propellant
ests with

: temperature design
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Figure 82. Altitude Engine Performance
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Figure 83. High Thrust Berylco-10 Duct After 60 Second
Firings @0 Firings Total)
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Figure 84, Thrust Chamber Temperatures for 60 Second Firing
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with the duct concept. Following the 60 second data run, the analysis of
the data indicated that the thruster could be run for the final duration
run of the series, a 500 second test.

The 500 second duration test was to be made with ambient temperature
propellants. Thrust chamber temperatures measured during the 290 second
duration test with ambient temperature propellants are shown graphically
in Figure 85. The highest temperatures of 1570°F (1128°K) occur at a nozzle
area ratio of 10. Steady state throat wall temperatures are 1160°F (900°K).
These data are significant in that they do prove the viability of the con-
cept. The run was started purposely at a reduced mixture ratio. At 40 sec-
onds the decision was made to increase the mixture ratio to its nominal
value. At 250 seconds the automatic H, pressure control regulator began
to bottom out because of an apparent 1oss of supply pressure. The mixture
ratio suddenly increased and the run was terminated. Except for the un-
fortunate sudden rise in mixture ratio, there is every indication that the
500 seconds would have been completed.

The long duration test, scheduled for 500 seconds duration was termi-
nated after 290 seconds because of Hy supply pressure decay. The valve
to the second Hz trailer, required for the second half of the test was
found to have been locked in the closed position. At the onset of rapid H
pressure decay and a nozzle throat temperature sudden rise in temperature
the test was terminated. Examination of the hardware revealed
localized surface melting damage to the outer oxidizer ring and a corres-
ponding melt through of the duct.

The injector is shown in Figure 86 and 87 after the termination of
the test. As is observed the injector proper is in very good condition.
Damage occurred only on the outer oxidizer ring and fuel film coolant
metering ring. The inner rings were in excellent condition as indicated.

The sudden rise in mixture ratio resulted in irreparable damage to the
Berylco-10 duct, since the Hp flow to the duct suddenly dropped by at least
25 percent. The duct is shown in Figures 88 and 89 post test the 290 second
firing.

Experimental performance with cold propellants, with the X408170-4
triplet injector designed for cold propellants, compares closely with per-
formance with ambient temperature propellants. The temperature conditions
for the cold propellant tests are listed in Table 12. Propellant tempera-
tures at the engine inlet were as low as 380°R (211°K) for the 02 and 280°R
((155°K) for the Hp. Hydrogen flow to the chamber cooling duct ranged from
25-30 percent. The X408163-2 duct, designed with smaller groove flow areas,
was used for the tests with cold propellant. Characteristic velocity and
specific impulse performance for the cold propellant tests are presented in
Figure 90. The measured characteristic velocity is somewhat higher than for the
cold propellants. The nozzle area ratio for the cold propellant tests was 12.
The measured specific impulse, corrected to vacuum, was extrapolated to that
for a nozzle area of 40 by multiplying by the ratio of theoretical vacuum
thrust coefficients and the nozzle divergence corrections for comparison to
the ambient propellant temperature test results. (These corrections are
1.0517 and 1.0335, respectively.) The specific impulse compares closely
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Figure 88. Internal View of Duct After 290 Second Firing

124



Figure 89. External View of Duct After 290 Second Firing
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Table 12. Cold Propellant Test Temperature (°R)(°K)

Injector(]) Igniter
Test %2 "2 %2 f2
945 380 (211) 280 (156) 380 (211) 280 (156)
947 360 (200) 310 (172) 492 (273) 280 (156)
950 460 (256) 300 (167) 450 (250) 320 (178)
951 370 (206) 320 (178) 498 (277) 420 (233)

(])Measured at inlet to subsonic flow control orifices

for the different temperature conditions, with the cold propellant data
being slightly higher because of the Tower percent duct cooling flow.
Experimental specific impulse at an overall mixture ratio of 3.9 is 435
seconds with 320°R (178°K) H, and 370°R (206°K) 0, injection propellant
temperature.

In all of the tests, except for two no ignition tests, the high response
catalytic igniter functioned quite well. The two no ignitions may have been
due to sequencing valve delays. The exact cause is uncertain at this time.
Figure 91 shows a typical start ignition transient. Following the igniter
flow variables and signals, it is seen that the igniter response is extremely
fast. The igniter ignition flow was programmed ahead of the main thruster
valves by ~ 25 ms. It would appear that the igniter could safely be over-
lapped into the starting sequence without difficulty.

4.1.2.5 Correlation with Predicted Modelling

The thermal data indicated, as a whole, a slightly higher temperature
than was predicted by the design model. The overall trends were in near
perfect agreement with the model. The minor discrepancies are felt to be
associated with the duct gap not exactly matching the design valves.
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The performance correlation to the model proved to be outstanding as
illustrated in Figure 92. The 32 percent coolant point is overlayed
on the graph as originally derived from the MSFC data for the smaller
TRW thruster. The 32 percent data from this program actually exceed the
model predictions as shown. Of interest also is the fact that the original
predicted rol1-off at high MR did not actually turn out to be as severe.

4.1.3 Pulse Mode Tests

Runs 981 through 987 were conducted to partially investigate the
pulse capability of the duct cooled thruster design. It should be kept
in mind here that this program did not develop optimum valves for the
thruster. The valves were TRW supplied and no effort was made to push
these valves to their design 1imit. The igniter timing sequence was also
not changed for these tests. The details of the pulse tests are summarized

in Table 13.

Table 13. Pulse Mode Investigations

Test No. of On-Time/ (1b-sec) (KG-sec)
Number Pulses 0ff-Time Impulse
VAl 981 1 0.100ms/ — 56.8 (2576.4)
Sea Level
VAl 982 1 0.100ms/ — 63.0 (2857.7)
Sea Level
Altitude 983 5 0.100ms/0.200ms 93.2 (1st pulse) (4227.6)
984 5 0.075ms/0.100ms 68.4 (1st pulse) (3102.6)
985 5 0.050ms /0, 200ms 32.4,40.4,39.6,42.3,41.4(1469.7)

(1832.5),(1796.3) ,(1918.7),(1877.9)
98b 5 0.050ms /0.100ms 35.3 (1st pulse) (1601.2)
987 5 0.050ms/0.100ms 30.3 (1st pulse) (1374.4)

The qpproximate specific impulse for the initial 0.050 ms pulse of a
pu]se series, defined as the integrated thrust/integrated flow over the pulse,
TS.approximate]y 328 seconds. During the 0.050 ms pulses, flow across the
injection orifices is sonic. Following the P.-c* dependance empirical data
for both the low and high pressure performance data gives an average specific
impulse result of 395 to 400 seconds for the 50 ms results.

Test number 988 was a 2.0 second test after the series of tests. This
test showed a significant shift in overall fuel AP. Physical examination
of the injector showed the fuel rings to be collapsed in several locations.

Figure 93 shows the beginning of the pulse train for run VA1-983 with
nominally 100ms pulses. The pulses were quite reproducible as seen by
visual comparison and F-t integrations. The long igniter Pc decay and rise
times were found to be caused by a partially blocked instrumentation tube.
The igniter temperature response is seen to be excellent on each startup.

Figure 94 shows typical data for the 50 ms pulse train of test VA1-985.
The integrated impulse results show excellent reproducibility beyond the
first pulse.
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Closer examination of Figures 93 and 94 provide a strong indication
that the problem with the Hy ring collapse is associated with a phenomena
associated with pulsing. Note the pressure ringing in the second pulse
on both sets of tests. Since it was not possible to place high frequency
pressure response instrumentation in the thruster, the low frequency instru-
ment outputs can only be received as an indicator of some difficulty. It
appears that some reaction was taking place within the 0z manifolding. It
js speculated that there may have been popping occurring in the internal
ring cavities also.

No damage was incurred in the 0O side. The 0, rings are shorter,
stiff cylinders. The longer Hp cylinders did not apparently have sufficient
wall thickness to Tength ratio to withstand the magnitude of this hypothesized
popping effect.

4.2 IGNITER-ONLY OPERATION

Firing tests of a catalytic pilot bed igniter mounted in a complete
1500 1bf (6672 N) thruster assembly were performed to determine the MIB
capability and cooling requirements, if any, for igniter-only mode of
operation. The previous results of the thruster/system M1B analysis
(Section 3.4.1) had indicated the significant advantages of igniter-only
operation in achieving extremely low MIB for precise attitude control
with minimum propellant usage. These tests were conducted to identify
any problems caused by firing of the igniter in a full thruster assembly
without main propellant flow.

4.2.1 Test Description

The thruster igniter-only evaluation firings were performed with a
full scale cooling duct and thrust chamber, except that a nozzle with an
area ratio of 12:1 rather than a 40:1 nozzle was used to allow the use of
the HA5 altitude test stand. This test position was used for the Tow
pressure thruster tests (described in Volume I), and was equipped with
a thrust measurement stand of suitable range for igniter-only firing
of the high pressure thruster. The same catalytic igniter used for all
of the full thruster tests was installed in a copper dummy high Pc in-
jector instrumented for chamber pressure and face temperature measure-
ments. The igniter, dummy injector, duct, and thrust chamber are shown
in Figure 95. Installation of the thruster assembly on the HA5 thrust
mount is shown in Figure 96. This photograph was taken during chill-
down for an igniter-only test with the thruster at initial temperatures
below 300°R (167°K).

4,2.2 Summary of Results

The data resulting from the high pressure thruster igniter-only
tests are presented in Table 14 and summarized as follows:

Test 365T: A 1/2-second checkout firing was conducted to verify
ignition with ambient temperature propellants.
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Figure 95. Igniter, Dummy Injector, Duct and Thrust Chamber

Figure 96. Installation of Thruster Assembly on HA5 Thrust Mount
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Test 365Z: Duct coolant flow equal to one-half the total igniter
flow rate was maintained during a 30-second duration igniter-only firing.
Maximum chamber temperature was 446°F (503°K) measured at the thruster
throat.

Test 365Z16: A 60-second igniter firing was performed without any
duct coolant flow. Maximum chamber temperature was 482°F (523°K) and
stabilized, indicating that continuous igniter firings of 60 seconds or
lTonger could be made without duct flow or other cooling of the main
thruster being required.

Test 366K: Igniter flow rates were reduced for this firing,
resulting in a thrust level less than 10 1bf (44.5 N) and a thruster
chamber pressure of less than 1 psia (6.9 kN/mz).

Test 366Z7: A series of five pulses was conducted at reduced igniter
flows to verify repeatability of ignitions.

Test 367K, R: Low temperature propellant tests were successfully
performed with chilled thruster hardware. Igniter flows were increased
for test 367R.

Test 367S: Low temperature pulses of 500 msec duration each were
conducted with Tow temperature propellants and thruster hardware.

Test 367T: A series of five pulses was made with firing durations
reduced to 100 msec on time. An oscillograph recording of this firing
is reproduced in Figure 97, and indicates the repeatability of the pulses.
No duct coolant was employed for any of the tests after 365Z, and the
thruster and igniter hardware remained in excellent condition, as shown
in Figures 98 and 99.

The results of the igniter-only high pressure thruster evaluations
verified the previous analyses indicating that extremely low MIB values
are feasible with this mode of operation. Test firings of up to 60-
seconds steady-state operation without any chamber coolant required
have indicated that igniter-only operation has many advantages for a
reaction control thruster.
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Figure 98. Thruster Hardware After Test

Figure 99, Igniter Hardware After Test 365Z
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4.3 ENVIRONMENTAL EFFECTS ON THRUSTER OPERATION

A series of firing tests of the high pressure thruster/igniter
assembly was conducted to evaluate the effects on thruster operation of
potentially degrading environmental exposures. For these tests, the
analytical and experimental results of catalytic igniter environmental
effects investigations (described in Volume I of this contract report)
were utilized in selecting test conditions. The environmental conditions
evaluated during this task were saturated air exposure at thruster hard-
ware temperatures as low as 200°R (111°K).

4.3.1 Test Description

The environmental effects evaluation tests were performed with the
40:1 exit area ratio, altitude thrust chamber and the high pressure trip-
let injector. The thruster assembly was installed in the altitude test
cell and chilled with liquid nitrogen. Exposure of the subzero temper-
ature thruster hardware to saturated air (100 percent relative humidity)
resulted in significant frost formation on the thruster surfaces, as
shown in Figure 100,

The photograph shown in Figure 101 was taken during saturated air
soaking of the chilled thruster prior to test firing. Steam from the
altitude system was utilized as a source of saturated air for these tests.
The effects of soak times of up to 30 minutes in saturated air with
thruster temperatures as low as 200°R (111°K) were evaluated during this
test series.

4.3.2 Summary of Results

Data from the thruster environmental effects tests are presented
in Table 15 and the results are summarized as follows:

Tests 989 - 990: Injtial checkout tests were conducted with only
ambient air, normal humidity exposure of the thruster to establish base-
1ine ignition response before environmental soak exposure.

Test 991: The first exposure was 6 minutes saturated air at re-
duced propellant and initial thruster temperatures, as indicated in
Table 4-VII. A trickle purge of gaseous nitrogen was maintained through
the igniter to prevent catalyst bed icing. The igniter fired satis-
factorily on this test, but main thruster valves did not open. In-
spection of the test installation revealed that liquid nitrogen from
the conditioning system was dripping on the main thruster valves, causing
jce formation which physically prevented external movement of the valve.
The thruster valves were shielded from LN, exposure for all subsequent
tests.

Test 992: A 30-minute saturated air soak at initial thruster

temperatures similar to test 991 resulted in normal main thruster ignition
with the GN2 igniter trickle purge on.
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Figure 100. Chilled High Pc Thruster - Environmental Effects Tests
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Figure 101,

iy
L
iE
il

Saturated Air Soaking of Chilled Thruster Before Test Firing
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Test 993: Saturated air soak of 15 minutes duration without GN
jgniter purge did not affect the operation of the catalytic igniter;
however, main thruster ignition was not achieved because of ice formation
externally preventing opening of the main oxygen valve.

Test 994: A checkout test was again performed at ambient temperatures
and normal humidity to verify baseline ignition characteristics.

Test 995: Main thruster ignition was achieved after 28 minutes of
saturated air soak at a thruster initial temperature of 217°R (121°K).
No chamber pressure rise was measured because of ice formation within
the Pc lines. The frozen chamber pressure line indicated that saturated
air did reach the injector face during the soak period. The igniter purge
was maintained for this test firing.

Test 996: Repeating test 995 without the GNp trickle purge through
the catalyst bed resulted in no igniter reaction, and thus no main thruster
ignition would occur. Normal igniter operation was most likely prevented
by ice formation within the catalyst bed.

The results of the high pressure thruster environmental tests indi-
cated that frost or ice formation on the thruster surfaces did not affect
ignition characteristics, as long as the catalyst bed itself was not
allowed to ice up. Purging and/or heating of the catalyst bed is there-
fore recommended to insure high response reaction after extreme environ-
mental exposures. This same recommendation was also made after analysis
of the igniter only environmental effects tests described in Volume I of
this contract report.
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5. CONCLUDING REMARKS

The overall objectives of the high pressure thruster program tasks were
to determine the delivered performance, operational requirements, and chamber
cooling capability for a high performance, duct cooled, gaseous Hp/0, attitude
control thruster. Specific task efforts included:

Design and fabrication of 1500 1bf (6672 N) thruster
assemblies, including detailed performance, thermal,
stress, and life analyses.

Demonstration of minimum response catalytic ignition
of the thruster.

Experimental evaluation of thruster altitude performance
and minimum impulse bit, overall operating characteristics,
and duct cooled thrust chamber cooling capability.

Determination of environmental effects on thruster
operation, including exposure to saturated air at thruster
temperatures as low as 200°R (111°K), resulting in sig-
nificant ice formation.

The major conclusions from the high pressure thruster evaluations

were:

The raised post triplet injector designed for this
program delivered an Isp of 432 1bf-sec/lbm (4248 N-sec/kg)
with a cooled, flightweight thrust chamber (e= 40).

Repeatable pulse mode impulse bits as Tow as 30 1b-sec
(1361 kg-sec) were demonstrated.

Consistent ignitions were attained at propellant tempera-
tures as low as -280°F (156°K).

A 25 to 40 ms ignition is possible with a catalytic
ignitor.

Cooling capability of the duct cooled thrust chamber was
demonstrated by extended duration firings attaining
steady-state thruster temperatures.

The experimental results of this program have demonstrated the high

performance capability of gaseous hydrogen-oxygen thrusters.

The effectiveness

of the duct cooling concept was proven for the lightweight thruster design.
The analytical cooling design techniques provide a workable, conservative
engineering design approach for the concept. The same mixing model approach

also predicts the performance with reasonable accuracy.
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APPENDIX A

CALCULATYON OF C* EFFICIENCY

The index of injector performance used in the experimental program was
the corrected C* efficiency. This parameter was calculated by iwo in&epen-
dent methods, one based on measurement of chumber pressure and the other on
measurement of thrust. Details of the corputational procedures and of the
applied corrections are given in the following secticns. The procedures and
nomenclature format are essentizally thosa as developed in NASA sponsored

programs at Rocketdyne,
1.0 CHAMBER PRESSURE TECHNIQUE

Characteristic velocity efficiency based on chamber pressurc is defined
by the following:

(pc)o (At)eff gc ‘

Ner = (A-1)
;f, CﬁT) (C*)theo
where ‘
(Pc)o = stagnation pressure at the throat
(At)eff = effective thermodynamic throat area
g. = conversion factor (32.174 lbm-ft/lbf—sccz)
WT = total propellant weight flcw rate
(C*)theo theoretical characteristic velocity based on

_ shifting equilibrium

Values calculated from Equation (A-1) are referred to as ”cor{ected“ C*
efficiencies, because the factors involvsd are obtained by application of
suitable influence factor corrections to measured parameters. Stagnation
pressure at the throat is obtained from iieasured static pressure at start

of nozzle convergence by assumption of isentropic cxpansion, effective throat.
arca is estimated from measured geometric area by allowing for geometrical
radius changes during firing and for nornunity discharge coefficient, and

chamber pressure is corrvcied to allov for energy losses from combustion
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gases to the chamber wall by heat transfer and friction. Equation (A-1)

may therefore be written as follows:

P A g f £ f I S 3
t TR _"DIS "FR "HL "KE
mee = b= (4-2)
(wo ¥ wf) (c )theo
where
p = measured static pressure at start of nozzle
¢ convergeince, psia

At = measured geometric throat area, in2

g, = conversion factor (32.174 lbm-ft/lbf-secz)

Wo = oxidizer wcight flow rate, lb/sec

wf = fuel weight flow rate, 1lb/sec

(C*)theoz theoretical C* based on shifting equilibrium
calculations, ft/sec

f = influence factor correcting observed static

P pressure to throat stagnation pressure

fTR = influence factor correcting for change in throat
radius during firing

fDIS = influence factor correcting throat area for
effective discharge coefficient

fFR = influence factor correcting measured chamber pres-
sure for frictional drag of combustion gases at
chamber wall

ﬁiL = influence factor correcting measured chamber pres-h
sure for heat losses from combustion gases to
chamber wall

fKF = influence factor correcting C* values to account

for finite chemical reaction rates

1.1 PRESSURE INFLUENCE FACTOR (fp)

{easured static pressurec at start of nozzle convergence is converted

tc stagnation pressure at the throat by assumption of effectively no
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combustion in the nozzle and application of the isentropic flow equations,
with contraction ratio (Ac/At) and shifting-equilibrium specific heat
ratios (v ). Frozen-equilibrium specific heat ratios usually make the in-
fluence correction factor about 1/2 percent larger. Hence the value
employed with shifting-equilibrium is the more conservative. Figure A-1

shows the influence factor as a function of contraction ratio.

PRESSURE RATIO
1.060—

}.050—

1.040

f
Pco
1,030

1,020

1.010

1.000 -

2 3 4 5 6 7
CONTRACTION RATIO (‘c)

Figure A-1. Momentum Correction

1.2 THROAT RADIUS INFLUENCE FACTOR (f

-

TR) -
Temperature gradients produced in the solid metal nozzle wall result

in thermal stresses which affect throat radius, with the result that the

geometric throat diameter ambient measurement is not the same as that which

exists during firing.

In the chamber type employed during the experimental effort (i.e. thin
throat wall thickness), the throat area change is computed from the thermal
growth of the throat based on temperature changes from ambient temperature.

The change in throat area can be written as:
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Ath = % (2 +aAT) {(AT) D2 (A-3)
where
AA* = change in throat area due to thermal growth
o = average thermal expansion ccefficient
AT = tenperature rise from ambient conditions
D = throat diameter at ambient conditions

The throat 4area correction factor is as follows:

QA

th
f 1 +
TR Ath

= [1 +aaT])? (A-4)

- -6
The thermal expansion coefficient for copper and CRES is @, = 9.8 x 10

in/in-°F, assuming an ambient temperature of 70°F, the throat area correc-

tion factor becones

£ = [1+9.8x10° (T

2
- o - 70] (a-5)

This equation was used to generate the curve in Figure A-2,

1.020

i v
1.015 l /

THROAT AREA CORRECTION FACTOR, 'TR

1.010 : A
|
1 Vd
R //
1oco 1 d
B N t;;, o N _
1000 ) - ///
!
995 Le
200 0 200 400 600 800 1000 1200

MEASURED YHROAT TEMPCRATURE, °F

Figure A-2. Throat Area Correction Factor
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1.3 THROAT DISCHARGE COEFFICIENT INFLUENCE FACTOR (fDIS)

The discharge coefficient is defined as the ratio of actual flow rate
through the throat to the theoretical maximum, based on geometric throat
area and ideal, uniform, one-dimensional flow with no boundary layer. The
discharge influence coefficient may be estimated in two ways: one based
on calculations made from a theoretical,'inviscid flow model of combustion
products, and the other based on a correlation of results obtained in
various experimental study results of air flow through nozzles of similar

geometry.

1.3.1 Theoretical Model

Total mass flow rate is given by

A .
ho= f PV dA (4-6)
(o]

where:

h-J
L]

gas density

<
L]

gas velocity

cross-sectional area

Theoretical maximum flow rate at the throat is

A

t
m__ = fP* v dA (A-7)
max
o -~
where:
At' = geometric area of the throat
P+ = sonic gas density
V* = sonic gas velocity

’

For ideal, uniform, parallel flow, Equation (D-7) becomes

Mmax = pr Vv* At (A-8)
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The discharge cocfficient is then

AR e

1.3.2 Empirical Value

Experimental conical nozzle discharge coefficients obtained with air
by various investigators are plotted in Figure A-3 against the indicated

geometric parameter. Data sources also are listed in Figure A-3.

The values obtained by both methods are found to be in excellent
agreement.
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Figure A-3. Conical Nozzle Discharge Coefficient

1.4 FRICTIONAL DRAG INFLUENCE FACTOR (fFR)

Calculations of C* based on chamber pressure are concerned with cham-
ber phenomena up to the nozzle throat. Drag forces to this point are small
enough to be considered negligible, so that the factor fFR may be taken to

be unity.
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1.5 ENERGY LOSS INFLUENCE FACTOR (ﬂ!L)

Chamber pressure and thrust are decreased by heat transfer from the
combustion gases to the walls of a thrust chamber. This enthalpy loss is
substantially reduced in ablative chambers and is effectively recovered in

a regeneratively cooled chamber.

The effect on C* of enthalpy loss by heat transfer can be estimated
from a loss of chamber enthalpy. This is determined from a two station

energy balance, one at the start of nozzle convergence and the other at the

throat,
172V 2eH = 1/2V2+H_ +Q (A-10)
c c t t conv
where:
VC = gas velocity at chamber exit
Vt = gas velocity at nozzle throat
H, = gas enthalpy at chamber exit
H = gas enthalpy at nozzle throat
écon$ heat loss in nozzle convergence
Velocity at the throat is given by:
- 2 . 1/2
Ve = [V ¢ 20, - Hy - Q)] (A-11)
With negligible nozzle inlet velocity
- ; 1/2 - -
vt - [Z(Hc Ht Qconv)] (a-12)

Logarithmic differentiation of Equation (A-12) gives

fit_ = 1/2 ¢ W - :t " Leony) = 1/2 ( : HCH- M ) (A-13)
(Hc - - Q ) Ho - He - Qeonv

Substitution of enthalpy definition into Equation (A-13)gives:

th S dT - ¢ ¢ th
~ = /2 HP . Hc - QP (A-14)
t c t conv
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¥ith constant Cp between the two stations,

dv ¢ dT dT
t
t c t conv \ c
If the specific heat ratio, v, is assumed constant,
8
dT T
St ot
c c

Substituting Equation (A-16) into Equation (A-15), replacing differentials

by incrementals, and noting that C* is proportional to gas velocity at the

aAv c. AT AT
AC* c t

vV L Cc* = 1/2 (H .-P“ A )(1 - T) (A-17)
t c t =~ Qony ¢

Total heat loss to the chamber walls, in Btu per pound of propellant, is

throat gives:

obtained by summation of observed heat fluxes over the appropriate areas:

Heat loss = Z( {A) A

W (A-18)
where:
q/A = experimentally observed heat flux
A = area applicable to each q/A value
&T = total propellant flow rate

1f this heat loss is ecquated to the change in enthalpy of the gas in the

combustion chamber, cp ATC, then substitution in Lquation (B.19) gives:

A [z(q/A)A] [1" (T, /T ]
¢ W He = - Qony (A-19)

v

hre applicable influence factor is:

- AC* _ 2(9/A)A ) l e (T /1~)
QIL 1+ ¢ = L2 [ W ] [ i -tn f Q ] (A-20)
1 c t conv
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An alternatc expression can be obtained from the basic C* definition:

T

c = (A-21)

lLogarithmic differentiation of this yields:
* dT
dc 1 c
- ° 2 T (4-22)
c

Substituting incrementals from differentials in Equation (A-22) gives

Ac* 1 AT(:

Equating ATC with the heat loss from Equation (A-18) results in the fol-

lowing:
ac” 1 [zgmall
e - 32 [ (q. : Lc T (A-24)
v, j
The applicable influence factor is:
- 11Z(q/A)A 1 _ _
fHL“1+2[ ) c_ T (a-25)
W p ¢ »
where
¢ = specific heat at constant pressure

P

Although derived independently it can be shown that these two ekprés-

sions, Equations (A-20) and (A-25), are nearly equivalent.

1.6 INFLUENCE FACTOR FOR CHEMICAL KINETICS (fKE)

The effect of finite chemical reaction rates is to produce a C* less
than the corresponding theoretical equilibrium values. A TRW Systems Group
developed onc-dimension nonequilibrium reacting gas computer program was
employed with reaction rate constants selected for the propellant system.
The fluid mechanical and chemical equations were integrated from the inlet

section by an implicit technique.
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2. CALCULATIONS BASED ON THRUST

The alternate determination of C* efficiency is based on thrust:

F g

n - vac °c
* W *

c (CF)vac wT c theo

(A-26)

where:
vac = Ecasured thryst.correctfd to vacuum conditions
y the equation: FVac = F + PaAe
F = measured thrust, 1bf
Pa = ambient pressure, psia
Ae = area of nozzle exit, in2
8. = conversion factor (32.174 lbm—ft/lbf-secz)
(CF)vac = theoretical shifting thrust coefficient (vacuum)
&T = total propellant flow rate, lbm/sec
c*theo = theoretical shifting-equilibrium characteristic

velocity, ft/sec

Values of vacuum thrust are obtained by applying corrections to sea-level
measurements, With these values, which include allowances for all impor-
tant departures from ideality, theoretical thrust coefficients may be used
for calculation of C*. CF efficiency is taken as 100 percent if there is
no combustion in the nozzle, if chemical equilibrium is maintained in the

nozzle cxpansion process, and if energy losses from the combustion gases
are accounted for. -

Applicable influence factors for measured thrust are specified in the
following equation:

(F+P A) g 0 0 . 0 ¢

FR "DIV "HL "KE
nc* = ¢ (A“27)
W *
(CF)theo (wo * wf) (c )theo
where:
F = measured thrust, lbf
Pa = ambient pressure, psia
Ae = area of nozzle exit, in2
g = conversion factor (32.174 lbm—ft/lbf-secz)
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(CF)thco = theorctical shifting thrust coefficient

{vacuum)

W, = oxidizer weight flow rate, lbm/sec

Wf = fuel weight flow rate, lbm/sec

(C*)theo theoretical shifting equilibrium characteristic
velocity, ft/sec

¢FR = influence for frictional losses

¢DIV = influence factor for nozzle divergence

OHL = influence factor for heat losses to chamber and
nozzle walls

PE = 1influence factor correcting C* and C_ values to

account for finite chemical reaction rates

The influence factors in Equation (aA-27) are applied to vacuum thrust

(F + PaAe) instead of to measured site thrust (F) because, for convecnience,
the factors are readily calculated as changes in efficiency based on theo-
retical vacuum parameters. The total influence factor is then of the form

AF/F .

Implicit in the usc of theoretical C_ values are corrections to geo-

metric throat area and to measured statichhamber pressure at start of
nozzle convergence. Therefore, calculation of corrected C* efficiency
from thrust measurement includes all the previously described corrections
plus an additional one to account for nonparallel nozzle exit flow. How-

ever, because (CF) is essentially independent of small changes to

theo
chamber pressure and contraction ratio which are involved in corrections
to Pc and At’ these corrections are of no practical significance in cal-

culation of C* from thrust measurements. -

2.1 INFLUENCE FACTOR FOR FRICTIONAL DRAG (¢FR)

This factor corrects for energy losses caused by viscous drag forces
on the thrust chamber walls. Its magnitude is estimated by a boundary
layer analysis utilizing the integral momentum equation for turbulent flow,
which accounts for boundary layer effects from the injector to the nozzle
exit by suitable description of the boundary layer profile and local skin

friction coefficient. A computer program is used to carry out a numerical
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integration of the cquation, including effects of pressure gradient, heat
transfer, and surface roughness. The program requires a potential nozzle
flow solution obtained from variable-property, axisymmetric method of
characteristics calculation of the flow field outside the boundary layer;
corresponding properties for the subsonic combustion chamber flow field
are also calculated.

2.2 INFLUENCE FACTOR FOR NOZZLE DIVERGENCE (¢DIV)

The one-dimensional thcoretical performance calculations assume that
flow at the nozzle exit is uniform and parallel to the nozzle axis. The
influence factor, ¢DIV’ allows for nozzle divergence (i.e., for nonaxial
flow) and for nonuniformity across the nozzle exit plane. It is calculated
by a computer program which utilizes the axisymmctric method of ‘character-
istics for a variable-property gas. Computation begins with a transonic
input near Mach 1, providing a characteristic line for use in the analysis
of the supersonic portion of the nozzle. The resulting pressures are in-

tegrated over the given geometry to give the geometric cfficiency.

2.3 INFLUENCE FACTOR FOR HEAT L0SS (%, )

HL
To obtain the heat loss influencc factor from measured thrust the

approach is identical to that taken previously from the pressure measure-

ment, except that the nozzle losses must alsoc be included. With constant

specific heat and gamma from start of nozzle convergence to exit, Equation
(A-20) becomes

HL 2 w H - H -QqQ . (A-28)
T . ¢ e  “‘nozzle

when "e'" corresponds to the exit condition, and the summation occurs over

the entire combustion.

An alternate can also be derived as in Equation (D-25). This equation

1 A)A 1 '
oy = 1+ 3 [Lq{ ) ][c T ] (4-29)
o P e

becomes
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2.4 INFLUENCE FACTOR FOR CHEMiCAL KINETICS (QKF)

The effect of finite chemical reaction rates is to produce a C* and
CF less than the corresponding thcoretical equilibrium values. A TRW
Systems Group developed one dimensional nonequilibrium reacting gas compu-
ter program was employed with reaction rate constants selected for the FLOX
methane-ethane blend propellant system. The fluid mechanical and chemical

equations were integrated from the inlet section by an implicit technique.
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